ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fv3 Unicode version

Theorem fv3 5534
Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fv3  |-  ( F `
 A )  =  { x  |  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F
y ) }
Distinct variable groups:    x, y, F   
x, A, y

Proof of Theorem fv3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elfv 5509 . . 3  |-  ( x  e.  ( F `  A )  <->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) )
2 biimpr 130 . . . . . . . . . 10  |-  ( ( A F y  <->  y  =  z )  ->  (
y  =  z  ->  A F y ) )
32alimi 1455 . . . . . . . . 9  |-  ( A. y ( A F y  <->  y  =  z )  ->  A. y
( y  =  z  ->  A F y ) )
4 vex 2740 . . . . . . . . . 10  |-  z  e. 
_V
5 breq2 4004 . . . . . . . . . 10  |-  ( y  =  z  ->  ( A F y  <->  A F
z ) )
64, 5ceqsalv 2767 . . . . . . . . 9  |-  ( A. y ( y  =  z  ->  A F
y )  <->  A F
z )
73, 6sylib 122 . . . . . . . 8  |-  ( A. y ( A F y  <->  y  =  z )  ->  A F
z )
87anim2i 342 . . . . . . 7  |-  ( ( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) )  ->  (
x  e.  z  /\  A F z ) )
98eximi 1600 . . . . . 6  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E. z
( x  e.  z  /\  A F z ) )
10 elequ2 2153 . . . . . . . 8  |-  ( z  =  y  ->  (
x  e.  z  <->  x  e.  y ) )
11 breq2 4004 . . . . . . . 8  |-  ( z  =  y  ->  ( A F z  <->  A F
y ) )
1210, 11anbi12d 473 . . . . . . 7  |-  ( z  =  y  ->  (
( x  e.  z  /\  A F z )  <->  ( x  e.  y  /\  A F y ) ) )
1312cbvexv 1918 . . . . . 6  |-  ( E. z ( x  e.  z  /\  A F z )  <->  E. y
( x  e.  y  /\  A F y ) )
149, 13sylib 122 . . . . 5  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E. y
( x  e.  y  /\  A F y ) )
15 exsimpr 1618 . . . . . 6  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E. z A. y ( A F y  <->  y  =  z ) )
16 df-eu 2029 . . . . . 6  |-  ( E! y  A F y  <->  E. z A. y ( A F y  <->  y  =  z ) )
1715, 16sylibr 134 . . . . 5  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E! y  A F y )
1814, 17jca 306 . . . 4  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F y ) )
19 nfeu1 2037 . . . . . . 7  |-  F/ y E! y  A F y
20 nfv 1528 . . . . . . . . 9  |-  F/ y  x  e.  z
21 nfa1 1541 . . . . . . . . 9  |-  F/ y A. y ( A F y  <->  y  =  z )
2220, 21nfan 1565 . . . . . . . 8  |-  F/ y ( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) )
2322nfex 1637 . . . . . . 7  |-  F/ y E. z ( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) )
2419, 23nfim 1572 . . . . . 6  |-  F/ y ( E! y  A F y  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) )
25 biimp 118 . . . . . . . . . . . . . 14  |-  ( ( A F y  <->  y  =  z )  ->  ( A F y  ->  y  =  z ) )
26 ax-14 2151 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
x  e.  y  ->  x  e.  z )
)
2725, 26syl6 33 . . . . . . . . . . . . 13  |-  ( ( A F y  <->  y  =  z )  ->  ( A F y  ->  (
x  e.  y  ->  x  e.  z )
) )
2827com23 78 . . . . . . . . . . . 12  |-  ( ( A F y  <->  y  =  z )  ->  (
x  e.  y  -> 
( A F y  ->  x  e.  z ) ) )
2928impd 254 . . . . . . . . . . 11  |-  ( ( A F y  <->  y  =  z )  ->  (
( x  e.  y  /\  A F y )  ->  x  e.  z ) )
3029sps 1537 . . . . . . . . . 10  |-  ( A. y ( A F y  <->  y  =  z )  ->  ( (
x  e.  y  /\  A F y )  ->  x  e.  z )
)
3130anc2ri 330 . . . . . . . . 9  |-  ( A. y ( A F y  <->  y  =  z )  ->  ( (
x  e.  y  /\  A F y )  -> 
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3231com12 30 . . . . . . . 8  |-  ( ( x  e.  y  /\  A F y )  -> 
( A. y ( A F y  <->  y  =  z )  ->  (
x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3332eximdv 1880 . . . . . . 7  |-  ( ( x  e.  y  /\  A F y )  -> 
( E. z A. y ( A F y  <->  y  =  z )  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3416, 33biimtrid 152 . . . . . 6  |-  ( ( x  e.  y  /\  A F y )  -> 
( E! y  A F y  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3524, 34exlimi 1594 . . . . 5  |-  ( E. y ( x  e.  y  /\  A F y )  ->  ( E! y  A F
y  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3635imp 124 . . . 4  |-  ( ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F
y )  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) )
3718, 36impbii 126 . . 3  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  <->  ( E. y
( x  e.  y  /\  A F y )  /\  E! y  A F y ) )
381, 37bitri 184 . 2  |-  ( x  e.  ( F `  A )  <->  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F y ) )
3938abbi2i 2292 1  |-  ( F `
 A )  =  { x  |  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F
y ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    = wceq 1353   E.wex 1492   E!weu 2026    e. wcel 2148   {cab 2163   class class class wbr 4000   ` cfv 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2739  df-un 3133  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-iota 5174  df-fv 5220
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator