Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fv3 | Unicode version |
Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fv3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfv 5484 | . . 3 | |
2 | biimpr 129 | . . . . . . . . . 10 | |
3 | 2 | alimi 1443 | . . . . . . . . 9 |
4 | vex 2729 | . . . . . . . . . 10 | |
5 | breq2 3986 | . . . . . . . . . 10 | |
6 | 4, 5 | ceqsalv 2756 | . . . . . . . . 9 |
7 | 3, 6 | sylib 121 | . . . . . . . 8 |
8 | 7 | anim2i 340 | . . . . . . 7 |
9 | 8 | eximi 1588 | . . . . . 6 |
10 | elequ2 2141 | . . . . . . . 8 | |
11 | breq2 3986 | . . . . . . . 8 | |
12 | 10, 11 | anbi12d 465 | . . . . . . 7 |
13 | 12 | cbvexv 1906 | . . . . . 6 |
14 | 9, 13 | sylib 121 | . . . . 5 |
15 | exsimpr 1606 | . . . . . 6 | |
16 | df-eu 2017 | . . . . . 6 | |
17 | 15, 16 | sylibr 133 | . . . . 5 |
18 | 14, 17 | jca 304 | . . . 4 |
19 | nfeu1 2025 | . . . . . . 7 | |
20 | nfv 1516 | . . . . . . . . 9 | |
21 | nfa1 1529 | . . . . . . . . 9 | |
22 | 20, 21 | nfan 1553 | . . . . . . . 8 |
23 | 22 | nfex 1625 | . . . . . . 7 |
24 | 19, 23 | nfim 1560 | . . . . . 6 |
25 | biimp 117 | . . . . . . . . . . . . . 14 | |
26 | ax-14 2139 | . . . . . . . . . . . . . 14 | |
27 | 25, 26 | syl6 33 | . . . . . . . . . . . . 13 |
28 | 27 | com23 78 | . . . . . . . . . . . 12 |
29 | 28 | impd 252 | . . . . . . . . . . 11 |
30 | 29 | sps 1525 | . . . . . . . . . 10 |
31 | 30 | anc2ri 328 | . . . . . . . . 9 |
32 | 31 | com12 30 | . . . . . . . 8 |
33 | 32 | eximdv 1868 | . . . . . . 7 |
34 | 16, 33 | syl5bi 151 | . . . . . 6 |
35 | 24, 34 | exlimi 1582 | . . . . 5 |
36 | 35 | imp 123 | . . . 4 |
37 | 18, 36 | impbii 125 | . . 3 |
38 | 1, 37 | bitri 183 | . 2 |
39 | 38 | abbi2i 2281 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wex 1480 weu 2014 wcel 2136 cab 2151 class class class wbr 3982 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |