| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fv3 | Unicode version | ||
| Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fv3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfv 5624 |
. . 3
| |
| 2 | biimpr 130 |
. . . . . . . . . 10
| |
| 3 | 2 | alimi 1501 |
. . . . . . . . 9
|
| 4 | vex 2802 |
. . . . . . . . . 10
| |
| 5 | breq2 4086 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | ceqsalv 2830 |
. . . . . . . . 9
|
| 7 | 3, 6 | sylib 122 |
. . . . . . . 8
|
| 8 | 7 | anim2i 342 |
. . . . . . 7
|
| 9 | 8 | eximi 1646 |
. . . . . 6
|
| 10 | elequ2 2205 |
. . . . . . . 8
| |
| 11 | breq2 4086 |
. . . . . . . 8
| |
| 12 | 10, 11 | anbi12d 473 |
. . . . . . 7
|
| 13 | 12 | cbvexv 1965 |
. . . . . 6
|
| 14 | 9, 13 | sylib 122 |
. . . . 5
|
| 15 | exsimpr 1664 |
. . . . . 6
| |
| 16 | df-eu 2080 |
. . . . . 6
| |
| 17 | 15, 16 | sylibr 134 |
. . . . 5
|
| 18 | 14, 17 | jca 306 |
. . . 4
|
| 19 | nfeu1 2088 |
. . . . . . 7
| |
| 20 | nfv 1574 |
. . . . . . . . 9
| |
| 21 | nfa1 1587 |
. . . . . . . . 9
| |
| 22 | 20, 21 | nfan 1611 |
. . . . . . . 8
|
| 23 | 22 | nfex 1683 |
. . . . . . 7
|
| 24 | 19, 23 | nfim 1618 |
. . . . . 6
|
| 25 | biimp 118 |
. . . . . . . . . . . . . 14
| |
| 26 | ax-14 2203 |
. . . . . . . . . . . . . 14
| |
| 27 | 25, 26 | syl6 33 |
. . . . . . . . . . . . 13
|
| 28 | 27 | com23 78 |
. . . . . . . . . . . 12
|
| 29 | 28 | impd 254 |
. . . . . . . . . . 11
|
| 30 | 29 | sps 1583 |
. . . . . . . . . 10
|
| 31 | 30 | anc2ri 330 |
. . . . . . . . 9
|
| 32 | 31 | com12 30 |
. . . . . . . 8
|
| 33 | 32 | eximdv 1926 |
. . . . . . 7
|
| 34 | 16, 33 | biimtrid 152 |
. . . . . 6
|
| 35 | 24, 34 | exlimi 1640 |
. . . . 5
|
| 36 | 35 | imp 124 |
. . . 4
|
| 37 | 18, 36 | impbii 126 |
. . 3
|
| 38 | 1, 37 | bitri 184 |
. 2
|
| 39 | 38 | abbi2i 2344 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |