| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fv3 | Unicode version | ||
| Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| fv3 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elfv 5556 | 
. . 3
 | |
| 2 | biimpr 130 | 
. . . . . . . . . 10
 | |
| 3 | 2 | alimi 1469 | 
. . . . . . . . 9
 | 
| 4 | vex 2766 | 
. . . . . . . . . 10
 | |
| 5 | breq2 4037 | 
. . . . . . . . . 10
 | |
| 6 | 4, 5 | ceqsalv 2793 | 
. . . . . . . . 9
 | 
| 7 | 3, 6 | sylib 122 | 
. . . . . . . 8
 | 
| 8 | 7 | anim2i 342 | 
. . . . . . 7
 | 
| 9 | 8 | eximi 1614 | 
. . . . . 6
 | 
| 10 | elequ2 2172 | 
. . . . . . . 8
 | |
| 11 | breq2 4037 | 
. . . . . . . 8
 | |
| 12 | 10, 11 | anbi12d 473 | 
. . . . . . 7
 | 
| 13 | 12 | cbvexv 1933 | 
. . . . . 6
 | 
| 14 | 9, 13 | sylib 122 | 
. . . . 5
 | 
| 15 | exsimpr 1632 | 
. . . . . 6
 | |
| 16 | df-eu 2048 | 
. . . . . 6
 | |
| 17 | 15, 16 | sylibr 134 | 
. . . . 5
 | 
| 18 | 14, 17 | jca 306 | 
. . . 4
 | 
| 19 | nfeu1 2056 | 
. . . . . . 7
 | |
| 20 | nfv 1542 | 
. . . . . . . . 9
 | |
| 21 | nfa1 1555 | 
. . . . . . . . 9
 | |
| 22 | 20, 21 | nfan 1579 | 
. . . . . . . 8
 | 
| 23 | 22 | nfex 1651 | 
. . . . . . 7
 | 
| 24 | 19, 23 | nfim 1586 | 
. . . . . 6
 | 
| 25 | biimp 118 | 
. . . . . . . . . . . . . 14
 | |
| 26 | ax-14 2170 | 
. . . . . . . . . . . . . 14
 | |
| 27 | 25, 26 | syl6 33 | 
. . . . . . . . . . . . 13
 | 
| 28 | 27 | com23 78 | 
. . . . . . . . . . . 12
 | 
| 29 | 28 | impd 254 | 
. . . . . . . . . . 11
 | 
| 30 | 29 | sps 1551 | 
. . . . . . . . . 10
 | 
| 31 | 30 | anc2ri 330 | 
. . . . . . . . 9
 | 
| 32 | 31 | com12 30 | 
. . . . . . . 8
 | 
| 33 | 32 | eximdv 1894 | 
. . . . . . 7
 | 
| 34 | 16, 33 | biimtrid 152 | 
. . . . . 6
 | 
| 35 | 24, 34 | exlimi 1608 | 
. . . . 5
 | 
| 36 | 35 | imp 124 | 
. . . 4
 | 
| 37 | 18, 36 | impbii 126 | 
. . 3
 | 
| 38 | 1, 37 | bitri 184 | 
. 2
 | 
| 39 | 38 | abbi2i 2311 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |