Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fv3 | Unicode version |
Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fv3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfv 5494 | . . 3 | |
2 | biimpr 129 | . . . . . . . . . 10 | |
3 | 2 | alimi 1448 | . . . . . . . . 9 |
4 | vex 2733 | . . . . . . . . . 10 | |
5 | breq2 3993 | . . . . . . . . . 10 | |
6 | 4, 5 | ceqsalv 2760 | . . . . . . . . 9 |
7 | 3, 6 | sylib 121 | . . . . . . . 8 |
8 | 7 | anim2i 340 | . . . . . . 7 |
9 | 8 | eximi 1593 | . . . . . 6 |
10 | elequ2 2146 | . . . . . . . 8 | |
11 | breq2 3993 | . . . . . . . 8 | |
12 | 10, 11 | anbi12d 470 | . . . . . . 7 |
13 | 12 | cbvexv 1911 | . . . . . 6 |
14 | 9, 13 | sylib 121 | . . . . 5 |
15 | exsimpr 1611 | . . . . . 6 | |
16 | df-eu 2022 | . . . . . 6 | |
17 | 15, 16 | sylibr 133 | . . . . 5 |
18 | 14, 17 | jca 304 | . . . 4 |
19 | nfeu1 2030 | . . . . . . 7 | |
20 | nfv 1521 | . . . . . . . . 9 | |
21 | nfa1 1534 | . . . . . . . . 9 | |
22 | 20, 21 | nfan 1558 | . . . . . . . 8 |
23 | 22 | nfex 1630 | . . . . . . 7 |
24 | 19, 23 | nfim 1565 | . . . . . 6 |
25 | biimp 117 | . . . . . . . . . . . . . 14 | |
26 | ax-14 2144 | . . . . . . . . . . . . . 14 | |
27 | 25, 26 | syl6 33 | . . . . . . . . . . . . 13 |
28 | 27 | com23 78 | . . . . . . . . . . . 12 |
29 | 28 | impd 252 | . . . . . . . . . . 11 |
30 | 29 | sps 1530 | . . . . . . . . . 10 |
31 | 30 | anc2ri 328 | . . . . . . . . 9 |
32 | 31 | com12 30 | . . . . . . . 8 |
33 | 32 | eximdv 1873 | . . . . . . 7 |
34 | 16, 33 | syl5bi 151 | . . . . . 6 |
35 | 24, 34 | exlimi 1587 | . . . . 5 |
36 | 35 | imp 123 | . . . 4 |
37 | 18, 36 | impbii 125 | . . 3 |
38 | 1, 37 | bitri 183 | . 2 |
39 | 38 | abbi2i 2285 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wex 1485 weu 2019 wcel 2141 cab 2156 class class class wbr 3989 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |