| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an12 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an12.1 |
|
| mp3an12.2 |
|
| mp3an12.3 |
|
| Ref | Expression |
|---|---|
| mp3an12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an12.2 |
. 2
| |
| 2 | mp3an12.1 |
. . 3
| |
| 3 | mp3an12.3 |
. . 3
| |
| 4 | 2, 3 | mp3an1 1358 |
. 2
|
| 5 | 1, 4 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: mp3an12i 1375 ceqsralv 2831 brelrn 4957 funpr 5373 fpm 6828 ener 6931 ltaddnq 7594 ltadd1sr 7963 map2psrprg 7992 mul02 8533 ltapi 8783 div0ap 8849 divclapzi 8894 divcanap1zi 8895 divcanap2zi 8896 divrecapzi 8897 divcanap3zi 8898 divcanap4zi 8899 divassapzi 8909 divmulapzi 8910 divdirapzi 8911 redivclapzi 8925 ltm1 8993 mulgt1 9010 recgt1i 9045 recreclt 9047 ltmul1i 9067 ltdiv1i 9068 ltmuldivi 9069 ltmul2i 9070 lemul1i 9071 lemul2i 9072 cju 9108 nnge1 9133 nngt0 9135 nnrecgt0 9148 elnnnn0c 9414 elnnz1 9469 recnz 9540 eluzsubi 9750 ge0gtmnf 10019 m1expcl2 10783 1exp 10790 m1expeven 10808 expubnd 10818 iexpcyc 10866 expnbnd 10885 expnlbnd 10886 remim 11371 imval2 11405 cjdivapi 11446 absdivapzi 11665 fprodge1 12150 ef01bndlem 12267 sin01gt0 12273 cos01gt0 12274 cos12dec 12279 absefib 12282 efieq1re 12283 zeo3 12379 evend2 12400 cnbl0 15208 reeff1olem 15445 sincosq1sgn 15500 sincosq3sgn 15502 sincosq4sgn 15503 rpelogb 15623 lgsdir2lem2 15708 |
| Copyright terms: Public domain | W3C validator |