Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an12 | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mp3an12.1 | |
mp3an12.2 | |
mp3an12.3 |
Ref | Expression |
---|---|
mp3an12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an12.2 | . 2 | |
2 | mp3an12.1 | . . 3 | |
3 | mp3an12.3 | . . 3 | |
4 | 2, 3 | mp3an1 1319 | . 2 |
5 | 1, 4 | mpan 422 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: mp3an12i 1336 ceqsralv 2761 brelrn 4844 funpr 5250 fpm 6659 ener 6757 ltaddnq 7369 ltadd1sr 7738 map2psrprg 7767 mul02 8306 ltapi 8555 div0ap 8619 divclapzi 8664 divcanap1zi 8665 divcanap2zi 8666 divrecapzi 8667 divcanap3zi 8668 divcanap4zi 8669 divassapzi 8679 divmulapzi 8680 divdirapzi 8681 redivclapzi 8695 ltm1 8762 mulgt1 8779 recgt1i 8814 recreclt 8816 ltmul1i 8836 ltdiv1i 8837 ltmuldivi 8838 ltmul2i 8839 lemul1i 8840 lemul2i 8841 cju 8877 nnge1 8901 nngt0 8903 nnrecgt0 8916 elnnnn0c 9180 elnnz1 9235 recnz 9305 eluzsubi 9514 ge0gtmnf 9780 m1expcl2 10498 1exp 10505 m1expeven 10523 expubnd 10533 iexpcyc 10580 expnbnd 10599 expnlbnd 10600 remim 10824 imval2 10858 cjdivapi 10899 absdivapzi 11118 fprodge1 11602 ef01bndlem 11719 sin01gt0 11724 cos01gt0 11725 cos12dec 11730 absefib 11733 efieq1re 11734 zeo3 11827 evend2 11848 cnbl0 13328 reeff1olem 13486 sincosq1sgn 13541 sincosq3sgn 13543 sincosq4sgn 13544 rpelogb 13661 lgsdir2lem2 13724 |
Copyright terms: Public domain | W3C validator |