Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an12 | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mp3an12.1 | |
mp3an12.2 | |
mp3an12.3 |
Ref | Expression |
---|---|
mp3an12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an12.2 | . 2 | |
2 | mp3an12.1 | . . 3 | |
3 | mp3an12.3 | . . 3 | |
4 | 2, 3 | mp3an1 1319 | . 2 |
5 | 1, 4 | mpan 422 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: mp3an12i 1336 ceqsralv 2761 brelrn 4842 funpr 5248 fpm 6655 ener 6753 ltaddnq 7356 ltadd1sr 7725 map2psrprg 7754 mul02 8293 ltapi 8542 div0ap 8606 divclapzi 8651 divcanap1zi 8652 divcanap2zi 8653 divrecapzi 8654 divcanap3zi 8655 divcanap4zi 8656 divassapzi 8666 divmulapzi 8667 divdirapzi 8668 redivclapzi 8682 ltm1 8749 mulgt1 8766 recgt1i 8801 recreclt 8803 ltmul1i 8823 ltdiv1i 8824 ltmuldivi 8825 ltmul2i 8826 lemul1i 8827 lemul2i 8828 cju 8864 nnge1 8888 nngt0 8890 nnrecgt0 8903 elnnnn0c 9167 elnnz1 9222 recnz 9292 eluzsubi 9501 ge0gtmnf 9767 m1expcl2 10485 1exp 10492 m1expeven 10510 expubnd 10520 iexpcyc 10567 expnbnd 10586 expnlbnd 10587 remim 10811 imval2 10845 cjdivapi 10886 absdivapzi 11105 fprodge1 11589 ef01bndlem 11706 sin01gt0 11711 cos01gt0 11712 cos12dec 11717 absefib 11720 efieq1re 11721 zeo3 11814 evend2 11835 cnbl0 13287 reeff1olem 13445 sincosq1sgn 13500 sincosq3sgn 13502 sincosq4sgn 13503 rpelogb 13620 lgsdir2lem2 13683 |
Copyright terms: Public domain | W3C validator |