ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clabel Unicode version

Theorem clabel 2333
Description: Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
clabel  |-  ( { x  |  ph }  e.  A  <->  E. y ( y  e.  A  /\  A. x ( x  e.  y  <->  ph ) ) )
Distinct variable groups:    y, A    ph, y    x, y
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem clabel
StepHypRef Expression
1 df-clel 2202 . 2  |-  ( { x  |  ph }  e.  A  <->  E. y ( y  =  { x  | 
ph }  /\  y  e.  A ) )
2 abeq2 2315 . . . 4  |-  ( y  =  { x  | 
ph }  <->  A. x
( x  e.  y  <->  ph ) )
32anbi2ci 459 . . 3  |-  ( ( y  =  { x  |  ph }  /\  y  e.  A )  <->  ( y  e.  A  /\  A. x
( x  e.  y  <->  ph ) ) )
43exbii 1629 . 2  |-  ( E. y ( y  =  { x  |  ph }  /\  y  e.  A
)  <->  E. y ( y  e.  A  /\  A. x ( x  e.  y  <->  ph ) ) )
51, 4bitri 184 1  |-  ( { x  |  ph }  e.  A  <->  E. y ( y  e.  A  /\  A. x ( x  e.  y  <->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1516    e. wcel 2177   {cab 2192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202
This theorem is referenced by:  frecabcl  6503
  Copyright terms: Public domain W3C validator