ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clabel Unicode version

Theorem clabel 2214
Description: Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
clabel  |-  ( { x  |  ph }  e.  A  <->  E. y ( y  e.  A  /\  A. x ( x  e.  y  <->  ph ) ) )
Distinct variable groups:    y, A    ph, y    x, y
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem clabel
StepHypRef Expression
1 df-clel 2085 . 2  |-  ( { x  |  ph }  e.  A  <->  E. y ( y  =  { x  | 
ph }  /\  y  e.  A ) )
2 abeq2 2197 . . . 4  |-  ( y  =  { x  | 
ph }  <->  A. x
( x  e.  y  <->  ph ) )
32anbi2ci 448 . . 3  |-  ( ( y  =  { x  |  ph }  /\  y  e.  A )  <->  ( y  e.  A  /\  A. x
( x  e.  y  <->  ph ) ) )
43exbii 1542 . 2  |-  ( E. y ( y  =  { x  |  ph }  /\  y  e.  A
)  <->  E. y ( y  e.  A  /\  A. x ( x  e.  y  <->  ph ) ) )
51, 4bitri 183 1  |-  ( { x  |  ph }  e.  A  <->  E. y ( y  e.  A  /\  A. x ( x  e.  y  <->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   A.wal 1288    = wceq 1290   E.wex 1427    e. wcel 1439   {cab 2075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-11 1443  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085
This theorem is referenced by:  frecabcl  6180
  Copyright terms: Public domain W3C validator