ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbab Unicode version

Theorem sbab 2298
Description: The right-hand side of the second equality is a way of representing proper substitution of  y for  x into a class variable. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
sbab  |-  ( x  =  y  ->  A  =  { z  |  [
y  /  x ]
z  e.  A }
)
Distinct variable groups:    z, A    x, z    y, z
Allowed substitution hints:    A( x, y)

Proof of Theorem sbab
StepHypRef Expression
1 sbequ12 1764 . 2  |-  ( x  =  y  ->  (
z  e.  A  <->  [ y  /  x ] z  e.  A ) )
21abbi2dv 2289 1  |-  ( x  =  y  ->  A  =  { z  |  [
y  /  x ]
z  e.  A }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   [wsb 1755    e. wcel 2141   {cab 2156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166
This theorem is referenced by:  sbcel12g  3064  sbceqg  3065
  Copyright terms: Public domain W3C validator