| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > clelab | Unicode version | ||
| Description: Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) | 
| Ref | Expression | 
|---|---|
| clelab | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-clab 2183 | 
. . . 4
 | |
| 2 | 1 | anbi2i 457 | 
. . 3
 | 
| 3 | 2 | exbii 1619 | 
. 2
 | 
| 4 | df-clel 2192 | 
. 2
 | |
| 5 | nfv 1542 | 
. . 3
 | |
| 6 | nfv 1542 | 
. . . 4
 | |
| 7 | nfs1v 1958 | 
. . . 4
 | |
| 8 | 6, 7 | nfan 1579 | 
. . 3
 | 
| 9 | eqeq1 2203 | 
. . . 4
 | |
| 10 | sbequ12 1785 | 
. . . 4
 | |
| 11 | 9, 10 | anbi12d 473 | 
. . 3
 | 
| 12 | 5, 8, 11 | cbvex 1770 | 
. 2
 | 
| 13 | 3, 4, 12 | 3bitr4i 212 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 | 
| This theorem is referenced by: elrabi 2917 | 
| Copyright terms: Public domain | W3C validator |