Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clelab | Unicode version |
Description: Membership of a class variable in a class abstraction. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
clelab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2157 | . . . 4 | |
2 | 1 | anbi2i 454 | . . 3 |
3 | 2 | exbii 1598 | . 2 |
4 | df-clel 2166 | . 2 | |
5 | nfv 1521 | . . 3 | |
6 | nfv 1521 | . . . 4 | |
7 | nfs1v 1932 | . . . 4 | |
8 | 6, 7 | nfan 1558 | . . 3 |
9 | eqeq1 2177 | . . . 4 | |
10 | sbequ12 1764 | . . . 4 | |
11 | 9, 10 | anbi12d 470 | . . 3 |
12 | 5, 8, 11 | cbvex 1749 | . 2 |
13 | 3, 4, 12 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wex 1485 wsb 1755 wcel 2141 cab 2156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: elrabi 2883 |
Copyright terms: Public domain | W3C validator |