![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > clabel | GIF version |
Description: Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.) |
Ref | Expression |
---|---|
clabel | ⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clel 2173 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 = {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ 𝐴)) | |
2 | abeq2 2286 | . . . 4 ⊢ (𝑦 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) | |
3 | 2 | anbi2ci 459 | . . 3 ⊢ ((𝑦 = {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
4 | 3 | exbii 1605 | . 2 ⊢ (∃𝑦(𝑦 = {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
5 | 1, 4 | bitri 184 | 1 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1351 = wceq 1353 ∃wex 1492 ∈ wcel 2148 {cab 2163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 |
This theorem is referenced by: frecabcl 6400 |
Copyright terms: Public domain | W3C validator |