| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clabel | GIF version | ||
| Description: Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.) |
| Ref | Expression |
|---|---|
| clabel | ⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clel 2202 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 = {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ 𝐴)) | |
| 2 | abeq2 2315 | . . . 4 ⊢ (𝑦 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) | |
| 3 | 2 | anbi2ci 459 | . . 3 ⊢ ((𝑦 = {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
| 4 | 3 | exbii 1629 | . 2 ⊢ (∃𝑦(𝑦 = {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1371 = wceq 1373 ∃wex 1516 ∈ wcel 2177 {cab 2192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 |
| This theorem is referenced by: frecabcl 6492 |
| Copyright terms: Public domain | W3C validator |