ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clabel GIF version

Theorem clabel 2323
Description: Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
clabel ({𝑥𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
Distinct variable groups:   𝑦,𝐴   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem clabel
StepHypRef Expression
1 df-clel 2192 . 2 ({𝑥𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 = {𝑥𝜑} ∧ 𝑦𝐴))
2 abeq2 2305 . . . 4 (𝑦 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝑦𝜑))
32anbi2ci 459 . . 3 ((𝑦 = {𝑥𝜑} ∧ 𝑦𝐴) ↔ (𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
43exbii 1619 . 2 (∃𝑦(𝑦 = {𝑥𝜑} ∧ 𝑦𝐴) ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
51, 4bitri 184 1 ({𝑥𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦𝐴 ∧ ∀𝑥(𝑥𝑦𝜑)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1362   = wceq 1364  wex 1506  wcel 2167  {cab 2182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192
This theorem is referenced by:  frecabcl  6457
  Copyright terms: Public domain W3C validator