| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfiun2g | Unicode version | ||
| Description: Alternate definition of
indexed union when |
| Ref | Expression |
|---|---|
| dfiun2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 2539 |
. . . . . 6
| |
| 2 | rsp 2555 |
. . . . . . . 8
| |
| 3 | clel3g 2914 |
. . . . . . . 8
| |
| 4 | 2, 3 | syl6 33 |
. . . . . . 7
|
| 5 | 4 | imp 124 |
. . . . . 6
|
| 6 | 1, 5 | rexbida 2503 |
. . . . 5
|
| 7 | rexcom4 2800 |
. . . . 5
| |
| 8 | 6, 7 | bitrdi 196 |
. . . 4
|
| 9 | r19.41v 2664 |
. . . . . 6
| |
| 10 | 9 | exbii 1629 |
. . . . 5
|
| 11 | exancom 1632 |
. . . . 5
| |
| 12 | 10, 11 | bitri 184 |
. . . 4
|
| 13 | 8, 12 | bitrdi 196 |
. . 3
|
| 14 | eliun 3945 |
. . 3
| |
| 15 | eluniab 3876 |
. . 3
| |
| 16 | 13, 14, 15 | 3bitr4g 223 |
. 2
|
| 17 | 16 | eqrdv 2205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-uni 3865 df-iun 3943 |
| This theorem is referenced by: dfiun2 3975 abnexg 4511 dfiun3g 4954 fniunfv 5854 iunexg 6227 uniqs 6703 ptex 13211 iunopn 14589 |
| Copyright terms: Public domain | W3C validator |