Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfiun2g | Unicode version |
Description: Alternate definition of indexed union when is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
dfiun2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 2497 | . . . . . 6 | |
2 | rsp 2513 | . . . . . . . 8 | |
3 | clel3g 2860 | . . . . . . . 8 | |
4 | 2, 3 | syl6 33 | . . . . . . 7 |
5 | 4 | imp 123 | . . . . . 6 |
6 | 1, 5 | rexbida 2461 | . . . . 5 |
7 | rexcom4 2749 | . . . . 5 | |
8 | 6, 7 | bitrdi 195 | . . . 4 |
9 | r19.41v 2622 | . . . . . 6 | |
10 | 9 | exbii 1593 | . . . . 5 |
11 | exancom 1596 | . . . . 5 | |
12 | 10, 11 | bitri 183 | . . . 4 |
13 | 8, 12 | bitrdi 195 | . . 3 |
14 | eliun 3870 | . . 3 | |
15 | eluniab 3801 | . . 3 | |
16 | 13, 14, 15 | 3bitr4g 222 | . 2 |
17 | 16 | eqrdv 2163 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cab 2151 wral 2444 wrex 2445 cuni 3789 ciun 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-uni 3790 df-iun 3868 |
This theorem is referenced by: dfiun2 3900 abnexg 4424 dfiun3g 4861 fniunfv 5730 iunexg 6087 uniqs 6559 iunopn 12640 |
Copyright terms: Public domain | W3C validator |