Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfiun2g | Unicode version |
Description: Alternate definition of indexed union when is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
dfiun2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 2485 | . . . . . 6 | |
2 | rsp 2501 | . . . . . . . 8 | |
3 | clel3g 2843 | . . . . . . . 8 | |
4 | 2, 3 | syl6 33 | . . . . . . 7 |
5 | 4 | imp 123 | . . . . . 6 |
6 | 1, 5 | rexbida 2449 | . . . . 5 |
7 | rexcom4 2732 | . . . . 5 | |
8 | 6, 7 | bitrdi 195 | . . . 4 |
9 | r19.41v 2610 | . . . . . 6 | |
10 | 9 | exbii 1582 | . . . . 5 |
11 | exancom 1585 | . . . . 5 | |
12 | 10, 11 | bitri 183 | . . . 4 |
13 | 8, 12 | bitrdi 195 | . . 3 |
14 | eliun 3849 | . . 3 | |
15 | eluniab 3780 | . . 3 | |
16 | 13, 14, 15 | 3bitr4g 222 | . 2 |
17 | 16 | eqrdv 2152 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 wex 1469 wcel 2125 cab 2140 wral 2432 wrex 2433 cuni 3768 ciun 3845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-uni 3769 df-iun 3847 |
This theorem is referenced by: dfiun2 3879 abnexg 4400 dfiun3g 4836 fniunfv 5703 iunexg 6057 uniqs 6527 iunopn 12339 |
Copyright terms: Public domain | W3C validator |