Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfiun2g | Unicode version |
Description: Alternate definition of indexed union when is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
dfiun2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 2501 | . . . . . 6 | |
2 | rsp 2517 | . . . . . . . 8 | |
3 | clel3g 2864 | . . . . . . . 8 | |
4 | 2, 3 | syl6 33 | . . . . . . 7 |
5 | 4 | imp 123 | . . . . . 6 |
6 | 1, 5 | rexbida 2465 | . . . . 5 |
7 | rexcom4 2753 | . . . . 5 | |
8 | 6, 7 | bitrdi 195 | . . . 4 |
9 | r19.41v 2626 | . . . . . 6 | |
10 | 9 | exbii 1598 | . . . . 5 |
11 | exancom 1601 | . . . . 5 | |
12 | 10, 11 | bitri 183 | . . . 4 |
13 | 8, 12 | bitrdi 195 | . . 3 |
14 | eliun 3877 | . . 3 | |
15 | eluniab 3808 | . . 3 | |
16 | 13, 14, 15 | 3bitr4g 222 | . 2 |
17 | 16 | eqrdv 2168 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cab 2156 wral 2448 wrex 2449 cuni 3796 ciun 3873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-uni 3797 df-iun 3875 |
This theorem is referenced by: dfiun2 3907 abnexg 4431 dfiun3g 4868 fniunfv 5741 iunexg 6098 uniqs 6571 iunopn 12794 |
Copyright terms: Public domain | W3C validator |