| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfiun2g | Unicode version | ||
| Description: Alternate definition of
indexed union when |
| Ref | Expression |
|---|---|
| dfiun2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 2537 |
. . . . . 6
| |
| 2 | rsp 2553 |
. . . . . . . 8
| |
| 3 | clel3g 2907 |
. . . . . . . 8
| |
| 4 | 2, 3 | syl6 33 |
. . . . . . 7
|
| 5 | 4 | imp 124 |
. . . . . 6
|
| 6 | 1, 5 | rexbida 2501 |
. . . . 5
|
| 7 | rexcom4 2795 |
. . . . 5
| |
| 8 | 6, 7 | bitrdi 196 |
. . . 4
|
| 9 | r19.41v 2662 |
. . . . . 6
| |
| 10 | 9 | exbii 1628 |
. . . . 5
|
| 11 | exancom 1631 |
. . . . 5
| |
| 12 | 10, 11 | bitri 184 |
. . . 4
|
| 13 | 8, 12 | bitrdi 196 |
. . 3
|
| 14 | eliun 3931 |
. . 3
| |
| 15 | eluniab 3862 |
. . 3
| |
| 16 | 13, 14, 15 | 3bitr4g 223 |
. 2
|
| 17 | 16 | eqrdv 2203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-uni 3851 df-iun 3929 |
| This theorem is referenced by: dfiun2 3961 abnexg 4494 dfiun3g 4936 fniunfv 5833 iunexg 6206 uniqs 6682 ptex 13129 iunopn 14507 |
| Copyright terms: Public domain | W3C validator |