| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfiun2g | Unicode version | ||
| Description: Alternate definition of
indexed union when |
| Ref | Expression |
|---|---|
| dfiun2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 2528 |
. . . . . 6
| |
| 2 | rsp 2544 |
. . . . . . . 8
| |
| 3 | clel3g 2898 |
. . . . . . . 8
| |
| 4 | 2, 3 | syl6 33 |
. . . . . . 7
|
| 5 | 4 | imp 124 |
. . . . . 6
|
| 6 | 1, 5 | rexbida 2492 |
. . . . 5
|
| 7 | rexcom4 2786 |
. . . . 5
| |
| 8 | 6, 7 | bitrdi 196 |
. . . 4
|
| 9 | r19.41v 2653 |
. . . . . 6
| |
| 10 | 9 | exbii 1619 |
. . . . 5
|
| 11 | exancom 1622 |
. . . . 5
| |
| 12 | 10, 11 | bitri 184 |
. . . 4
|
| 13 | 8, 12 | bitrdi 196 |
. . 3
|
| 14 | eliun 3920 |
. . 3
| |
| 15 | eluniab 3851 |
. . 3
| |
| 16 | 13, 14, 15 | 3bitr4g 223 |
. 2
|
| 17 | 16 | eqrdv 2194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-uni 3840 df-iun 3918 |
| This theorem is referenced by: dfiun2 3950 abnexg 4481 dfiun3g 4923 fniunfv 5809 iunexg 6176 uniqs 6652 ptex 12935 iunopn 14238 |
| Copyright terms: Public domain | W3C validator |