ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiun2g Unicode version

Theorem dfiun2g 3973
Description: Alternate definition of indexed union when  B is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
dfiun2g  |-  ( A. x  e.  A  B  e.  C  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
Distinct variable groups:    y, A    y, B    x, y
Allowed substitution hints:    A( x)    B( x)    C( x, y)

Proof of Theorem dfiun2g
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfra1 2539 . . . . . 6  |-  F/ x A. x  e.  A  B  e.  C
2 rsp 2555 . . . . . . . 8  |-  ( A. x  e.  A  B  e.  C  ->  ( x  e.  A  ->  B  e.  C ) )
3 clel3g 2914 . . . . . . . 8  |-  ( B  e.  C  ->  (
z  e.  B  <->  E. y
( y  =  B  /\  z  e.  y ) ) )
42, 3syl6 33 . . . . . . 7  |-  ( A. x  e.  A  B  e.  C  ->  ( x  e.  A  ->  (
z  e.  B  <->  E. y
( y  =  B  /\  z  e.  y ) ) ) )
54imp 124 . . . . . 6  |-  ( ( A. x  e.  A  B  e.  C  /\  x  e.  A )  ->  ( z  e.  B  <->  E. y ( y  =  B  /\  z  e.  y ) ) )
61, 5rexbida 2503 . . . . 5  |-  ( A. x  e.  A  B  e.  C  ->  ( E. x  e.  A  z  e.  B  <->  E. x  e.  A  E. y
( y  =  B  /\  z  e.  y ) ) )
7 rexcom4 2800 . . . . 5  |-  ( E. x  e.  A  E. y ( y  =  B  /\  z  e.  y )  <->  E. y E. x  e.  A  ( y  =  B  /\  z  e.  y ) )
86, 7bitrdi 196 . . . 4  |-  ( A. x  e.  A  B  e.  C  ->  ( E. x  e.  A  z  e.  B  <->  E. y E. x  e.  A  ( y  =  B  /\  z  e.  y ) ) )
9 r19.41v 2664 . . . . . 6  |-  ( E. x  e.  A  ( y  =  B  /\  z  e.  y )  <->  ( E. x  e.  A  y  =  B  /\  z  e.  y )
)
109exbii 1629 . . . . 5  |-  ( E. y E. x  e.  A  ( y  =  B  /\  z  e.  y )  <->  E. y
( E. x  e.  A  y  =  B  /\  z  e.  y ) )
11 exancom 1632 . . . . 5  |-  ( E. y ( E. x  e.  A  y  =  B  /\  z  e.  y )  <->  E. y ( z  e.  y  /\  E. x  e.  A  y  =  B ) )
1210, 11bitri 184 . . . 4  |-  ( E. y E. x  e.  A  ( y  =  B  /\  z  e.  y )  <->  E. y
( z  e.  y  /\  E. x  e.  A  y  =  B ) )
138, 12bitrdi 196 . . 3  |-  ( A. x  e.  A  B  e.  C  ->  ( E. x  e.  A  z  e.  B  <->  E. y
( z  e.  y  /\  E. x  e.  A  y  =  B ) ) )
14 eliun 3945 . . 3  |-  ( z  e.  U_ x  e.  A  B  <->  E. x  e.  A  z  e.  B )
15 eluniab 3876 . . 3  |-  ( z  e.  U. { y  |  E. x  e.  A  y  =  B }  <->  E. y ( z  e.  y  /\  E. x  e.  A  y  =  B ) )
1613, 14, 153bitr4g 223 . 2  |-  ( A. x  e.  A  B  e.  C  ->  ( z  e.  U_ x  e.  A  B  <->  z  e.  U. { y  |  E. x  e.  A  y  =  B } ) )
1716eqrdv 2205 1  |-  ( A. x  e.  A  B  e.  C  ->  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   {cab 2193   A.wral 2486   E.wrex 2487   U.cuni 3864   U_ciun 3941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-uni 3865  df-iun 3943
This theorem is referenced by:  dfiun2  3975  abnexg  4511  dfiun3g  4954  fniunfv  5854  iunexg  6227  uniqs  6703  ptex  13211  iunopn  14589
  Copyright terms: Public domain W3C validator