| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfiun2g | Unicode version | ||
| Description: Alternate definition of
indexed union when |
| Ref | Expression |
|---|---|
| dfiun2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 2561 |
. . . . . 6
| |
| 2 | rsp 2577 |
. . . . . . . 8
| |
| 3 | clel3g 2937 |
. . . . . . . 8
| |
| 4 | 2, 3 | syl6 33 |
. . . . . . 7
|
| 5 | 4 | imp 124 |
. . . . . 6
|
| 6 | 1, 5 | rexbida 2525 |
. . . . 5
|
| 7 | rexcom4 2823 |
. . . . 5
| |
| 8 | 6, 7 | bitrdi 196 |
. . . 4
|
| 9 | r19.41v 2687 |
. . . . . 6
| |
| 10 | 9 | exbii 1651 |
. . . . 5
|
| 11 | exancom 1654 |
. . . . 5
| |
| 12 | 10, 11 | bitri 184 |
. . . 4
|
| 13 | 8, 12 | bitrdi 196 |
. . 3
|
| 14 | eliun 3969 |
. . 3
| |
| 15 | eluniab 3900 |
. . 3
| |
| 16 | 13, 14, 15 | 3bitr4g 223 |
. 2
|
| 17 | 16 | eqrdv 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-uni 3889 df-iun 3967 |
| This theorem is referenced by: dfiun2 3999 abnexg 4537 dfiun3g 4981 fniunfv 5886 iunexg 6264 uniqs 6740 ptex 13297 iunopn 14676 |
| Copyright terms: Public domain | W3C validator |