ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsexgv Unicode version

Theorem ceqsexgv 2868
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 29-Dec-1996.)
Hypothesis
Ref Expression
ceqsexgv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsexgv  |-  ( A  e.  V  ->  ( E. x ( x  =  A  /\  ph )  <->  ps ) )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem ceqsexgv
StepHypRef Expression
1 nfv 1528 . 2  |-  F/ x ps
2 ceqsexgv.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
31, 2ceqsexg 2867 1  |-  ( A  e.  V  ->  ( E. x ( x  =  A  /\  ph )  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741
This theorem is referenced by:  ceqsrexv  2869  clel3g  2873  elxp4  5118  elxp5  5119  dmfco  5586  fndmdif  5623  fndmin  5625  fmptco  5684  rexrnmpo  5992  brtpos2  6254  xpsnen  6823  prarloc  7504  pceu  12297  metrest  14091
  Copyright terms: Public domain W3C validator