Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clel3g | GIF version |
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 13-Aug-2005.) |
Ref | Expression |
---|---|
clel3g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2230 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
2 | 1 | ceqsexgv 2855 | . 2 ⊢ (𝐵 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥) ↔ 𝐴 ∈ 𝐵)) |
3 | 2 | bicomd 140 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: clel3 2861 dfiun2g 3898 |
Copyright terms: Public domain | W3C validator |