ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clel3g GIF version

Theorem clel3g 2907
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 13-Aug-2005.)
Assertion
Ref Expression
clel3g (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem clel3g
StepHypRef Expression
1 eleq2 2269 . . 3 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
21ceqsexgv 2902 . 2 (𝐵𝑉 → (∃𝑥(𝑥 = 𝐵𝐴𝑥) ↔ 𝐴𝐵))
32bicomd 141 1 (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1515  wcel 2176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774
This theorem is referenced by:  clel3  2908  dfiun2g  3959
  Copyright terms: Public domain W3C validator