ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csb2 Unicode version

Theorem csb2 3061
Description: Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that  x can be free in  B but cannot occur in  A. (Contributed by NM, 2-Dec-2013.)
Assertion
Ref Expression
csb2  |-  [_ A  /  x ]_ B  =  { y  |  E. x ( x  =  A  /\  y  e.  B ) }
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hint:    B( x)

Proof of Theorem csb2
StepHypRef Expression
1 df-csb 3060 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 sbc5 2988 . . 3  |-  ( [. A  /  x ]. y  e.  B  <->  E. x ( x  =  A  /\  y  e.  B ) )
32abbii 2293 . 2  |-  { y  |  [. A  /  x ]. y  e.  B }  =  { y  |  E. x ( x  =  A  /\  y  e.  B ) }
41, 3eqtri 2198 1  |-  [_ A  /  x ]_ B  =  { y  |  E. x ( x  =  A  /\  y  e.  B ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   {cab 2163   [.wsbc 2964   [_csb 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sbc 2965  df-csb 3060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator