Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  csb2 Unicode version

Theorem csb2 3009
 Description: Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that can be free in but cannot occur in . (Contributed by NM, 2-Dec-2013.)
Assertion
Ref Expression
csb2
Distinct variable groups:   ,,   ,
Allowed substitution hint:   ()

Proof of Theorem csb2
StepHypRef Expression
1 df-csb 3008 . 2
2 sbc5 2936 . . 3
32abbii 2256 . 2
41, 3eqtri 2161 1
 Colors of variables: wff set class Syntax hints:   wa 103   wceq 1332  wex 1469   wcel 1481  cab 2126  wsbc 2913  csb 3007 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-sbc 2914  df-csb 3008 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator