ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csb2 Unicode version

Theorem csb2 2973
Description: Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that  x can be free in  B but cannot occur in  A. (Contributed by NM, 2-Dec-2013.)
Assertion
Ref Expression
csb2  |-  [_ A  /  x ]_ B  =  { y  |  E. x ( x  =  A  /\  y  e.  B ) }
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hint:    B( x)

Proof of Theorem csb2
StepHypRef Expression
1 df-csb 2972 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 sbc5 2901 . . 3  |-  ( [. A  /  x ]. y  e.  B  <->  E. x ( x  =  A  /\  y  e.  B ) )
32abbii 2230 . 2  |-  { y  |  [. A  /  x ]. y  e.  B }  =  { y  |  E. x ( x  =  A  /\  y  e.  B ) }
41, 3eqtri 2135 1  |-  [_ A  /  x ]_ B  =  { y  |  E. x ( x  =  A  /\  y  e.  B ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1314   E.wex 1451    e. wcel 1463   {cab 2101   [.wsbc 2878   [_csb 2971
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-sbc 2879  df-csb 2972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator