ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csb2 Unicode version

Theorem csb2 3051
Description: Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that  x can be free in  B but cannot occur in  A. (Contributed by NM, 2-Dec-2013.)
Assertion
Ref Expression
csb2  |-  [_ A  /  x ]_ B  =  { y  |  E. x ( x  =  A  /\  y  e.  B ) }
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hint:    B( x)

Proof of Theorem csb2
StepHypRef Expression
1 df-csb 3050 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 sbc5 2978 . . 3  |-  ( [. A  /  x ]. y  e.  B  <->  E. x ( x  =  A  /\  y  e.  B ) )
32abbii 2286 . 2  |-  { y  |  [. A  /  x ]. y  e.  B }  =  { y  |  E. x ( x  =  A  /\  y  e.  B ) }
41, 3eqtri 2191 1  |-  [_ A  /  x ]_ B  =  { y  |  E. x ( x  =  A  /\  y  e.  B ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141   {cab 2156   [.wsbc 2955   [_csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator