| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbeq1 | Unicode version | ||
| Description: Analog of dfsbcq 2991 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 2991 |
. . 3
| |
| 2 | 1 | abbidv 2314 |
. 2
|
| 3 | df-csb 3085 |
. 2
| |
| 4 | df-csb 3085 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 df-csb 3085 |
| This theorem is referenced by: csbeq1d 3091 csbeq1a 3093 csbiebg 3127 sbcnestgf 3136 cbvralcsf 3147 cbvrexcsf 3148 cbvreucsf 3149 cbvrabcsf 3150 csbing 3371 disjnims 4026 sbcbrg 4088 csbopabg 4112 pofun 4348 csbima12g 5031 csbiotag 5252 fvmpts 5640 fvmpt2 5646 mptfvex 5648 elfvmptrab1 5657 fmptcof 5730 fmptcos 5731 fliftfuns 5846 csbriotag 5891 csbov123g 5961 elovmporab1w 6125 eqerlem 6624 qliftfuns 6679 summodclem2a 11548 zsumdc 11551 fsum3 11554 sumsnf 11576 sumsns 11582 fsum2dlemstep 11601 fisumcom2 11605 fsumshftm 11612 fisum0diag2 11614 fsumiun 11644 prodsnf 11759 fprodm1s 11768 fprodp1s 11769 prodsns 11770 fprod2dlemstep 11789 fprodcom2fi 11793 pcmptdvds 12524 ctiunctlemf 12665 mulcncflem 14853 fsumdvdsmul 15237 |
| Copyright terms: Public domain | W3C validator |