| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > csbeq1 | Unicode version | ||
| Description: Analog of dfsbcq 2991 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) | 
| Ref | Expression | 
|---|---|
| csbeq1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfsbcq 2991 | 
. . 3
 | |
| 2 | 1 | abbidv 2314 | 
. 2
 | 
| 3 | df-csb 3085 | 
. 2
 | |
| 4 | df-csb 3085 | 
. 2
 | |
| 5 | 2, 3, 4 | 3eqtr4g 2254 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 df-csb 3085 | 
| This theorem is referenced by: csbeq1d 3091 csbeq1a 3093 csbiebg 3127 sbcnestgf 3136 cbvralcsf 3147 cbvrexcsf 3148 cbvreucsf 3149 cbvrabcsf 3150 csbing 3370 disjnims 4025 sbcbrg 4087 csbopabg 4111 pofun 4347 csbima12g 5030 csbiotag 5251 fvmpts 5639 fvmpt2 5645 mptfvex 5647 elfvmptrab1 5656 fmptcof 5729 fmptcos 5730 fliftfuns 5845 csbriotag 5890 csbov123g 5960 elovmporab1w 6124 eqerlem 6623 qliftfuns 6678 summodclem2a 11546 zsumdc 11549 fsum3 11552 sumsnf 11574 sumsns 11580 fsum2dlemstep 11599 fisumcom2 11603 fsumshftm 11610 fisum0diag2 11612 fsumiun 11642 prodsnf 11757 fprodm1s 11766 fprodp1s 11767 prodsns 11768 fprod2dlemstep 11787 fprodcom2fi 11791 pcmptdvds 12514 ctiunctlemf 12655 mulcncflem 14843 fsumdvdsmul 15227 | 
| Copyright terms: Public domain | W3C validator |