| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbeq1 | Unicode version | ||
| Description: Analog of dfsbcq 3010 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 3010 |
. . 3
| |
| 2 | 1 | abbidv 2327 |
. 2
|
| 3 | df-csb 3105 |
. 2
| |
| 4 | df-csb 3105 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2267 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-sbc 3009 df-csb 3105 |
| This theorem is referenced by: csbeq1d 3111 csbeq1a 3113 csbiebg 3147 sbcnestgf 3156 cbvralcsf 3167 cbvrexcsf 3168 cbvreucsf 3169 cbvrabcsf 3170 csbing 3391 disjnims 4053 sbcbrg 4117 csbopabg 4141 pofun 4380 csbima12g 5065 csbiotag 5287 fvmpts 5685 fvmpt2 5691 mptfvex 5693 elfvmptrab1 5702 fmptcof 5775 fmptcos 5776 fliftfuns 5895 csbriotag 5941 riotaeqimp 5952 csbov123g 6013 elovmporab1w 6177 eqerlem 6681 qliftfuns 6736 summodclem2a 11858 zsumdc 11861 fsum3 11864 sumsnf 11886 sumsns 11892 fsum2dlemstep 11911 fisumcom2 11915 fsumshftm 11922 fisum0diag2 11924 fsumiun 11954 prodsnf 12069 fprodm1s 12078 fprodp1s 12079 prodsns 12080 fprod2dlemstep 12099 fprodcom2fi 12103 pcmptdvds 12834 ctiunctlemf 12975 mulcncflem 15246 fsumdvdsmul 15630 |
| Copyright terms: Public domain | W3C validator |