| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbeq1 | Unicode version | ||
| Description: Analog of dfsbcq 3030 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 3030 |
. . 3
| |
| 2 | 1 | abbidv 2347 |
. 2
|
| 3 | df-csb 3125 |
. 2
| |
| 4 | df-csb 3125 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-sbc 3029 df-csb 3125 |
| This theorem is referenced by: csbeq1d 3131 csbeq1a 3133 csbiebg 3167 sbcnestgf 3176 cbvralcsf 3187 cbvrexcsf 3188 cbvreucsf 3189 cbvrabcsf 3190 csbing 3411 disjnims 4074 sbcbrg 4138 csbopabg 4162 pofun 4403 csbima12g 5089 csbiotag 5311 fvmpts 5714 fvmpt2 5720 mptfvex 5722 elfvmptrab1 5731 fmptcof 5804 fmptcos 5805 fliftfuns 5928 csbriotag 5974 riotaeqimp 5985 csbov123g 6046 elovmporab1w 6212 eqerlem 6719 qliftfuns 6774 summodclem2a 11900 zsumdc 11903 fsum3 11906 sumsnf 11928 sumsns 11934 fsum2dlemstep 11953 fisumcom2 11957 fsumshftm 11964 fisum0diag2 11966 fsumiun 11996 prodsnf 12111 fprodm1s 12120 fprodp1s 12121 prodsns 12122 fprod2dlemstep 12141 fprodcom2fi 12145 pcmptdvds 12876 ctiunctlemf 13017 mulcncflem 15289 fsumdvdsmul 15673 |
| Copyright terms: Public domain | W3C validator |