![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbeq1 | Unicode version |
Description: Analog of dfsbcq 2842 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbeq1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2842 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | abbidv 2205 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-csb 2934 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | df-csb 2934 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | 3eqtr4g 2145 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-11 1442 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-sbc 2841 df-csb 2934 |
This theorem is referenced by: csbeq1d 2939 csbeq1a 2941 csbiebg 2970 sbcnestgf 2979 cbvralcsf 2990 cbvrexcsf 2991 cbvreucsf 2992 cbvrabcsf 2993 csbing 3207 disjnims 3835 sbcbrg 3892 csbopabg 3914 pofun 4137 csbima12g 4788 csbiotag 5003 fvmpts 5376 fvmpt2 5380 mptfvex 5382 fmptcof 5459 fmptcos 5460 fliftfuns 5569 csbriotag 5612 csbov123g 5679 eqerlem 6313 qliftfuns 6366 isummolem2a 10758 zisum 10761 fisum 10765 sumsnf 10790 sumsns 10796 fsum2dlemstep 10815 fisumcom2 10819 fsumshftm 10826 fisum0diag2 10828 fsumiun 10858 |
Copyright terms: Public domain | W3C validator |