| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbeq1 | Unicode version | ||
| Description: Analog of dfsbcq 2991 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 2991 |
. . 3
| |
| 2 | 1 | abbidv 2314 |
. 2
|
| 3 | df-csb 3085 |
. 2
| |
| 4 | df-csb 3085 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 df-csb 3085 |
| This theorem is referenced by: csbeq1d 3091 csbeq1a 3093 csbiebg 3127 sbcnestgf 3136 cbvralcsf 3147 cbvrexcsf 3148 cbvreucsf 3149 cbvrabcsf 3150 csbing 3371 disjnims 4026 sbcbrg 4088 csbopabg 4112 pofun 4348 csbima12g 5031 csbiotag 5252 fvmpts 5642 fvmpt2 5648 mptfvex 5650 elfvmptrab1 5659 fmptcof 5732 fmptcos 5733 fliftfuns 5848 csbriotag 5893 csbov123g 5964 elovmporab1w 6128 eqerlem 6632 qliftfuns 6687 summodclem2a 11563 zsumdc 11566 fsum3 11569 sumsnf 11591 sumsns 11597 fsum2dlemstep 11616 fisumcom2 11620 fsumshftm 11627 fisum0diag2 11629 fsumiun 11659 prodsnf 11774 fprodm1s 11783 fprodp1s 11784 prodsns 11785 fprod2dlemstep 11804 fprodcom2fi 11808 pcmptdvds 12539 ctiunctlemf 12680 mulcncflem 14927 fsumdvdsmul 15311 |
| Copyright terms: Public domain | W3C validator |