ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csb2 GIF version

Theorem csb2 3086
Description: Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that 𝑥 can be free in 𝐵 but cannot occur in 𝐴. (Contributed by NM, 2-Dec-2013.)
Assertion
Ref Expression
csb2 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csb2
StepHypRef Expression
1 df-csb 3085 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 sbc5 3013 . . 3 ([𝐴 / 𝑥]𝑦𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑦𝐵))
32abbii 2312 . 2 {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
41, 3eqtri 2217 1 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1506  wcel 2167  {cab 2182  [wsbc 2989  csb 3084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-csb 3085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator