| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbeq2d | Unicode version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| csbeq2d.1 |
|
| csbeq2d.2 |
|
| Ref | Expression |
|---|---|
| csbeq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2d.1 |
. . . 4
| |
| 2 | csbeq2d.2 |
. . . . 5
| |
| 3 | 2 | eleq2d 2299 |
. . . 4
|
| 4 | 1, 3 | sbcbid 3086 |
. . 3
|
| 5 | 4 | abbidv 2347 |
. 2
|
| 6 | df-csb 3125 |
. 2
| |
| 7 | df-csb 3125 |
. 2
| |
| 8 | 5, 6, 7 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-sbc 3029 df-csb 3125 |
| This theorem is referenced by: csbeq2dv 3150 |
| Copyright terms: Public domain | W3C validator |