ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbeq2d Unicode version

Theorem csbeq2d 3119
Description: Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
csbeq2d.1  |-  F/ x ph
csbeq2d.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
csbeq2d  |-  ( ph  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )

Proof of Theorem csbeq2d
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq2d.1 . . . 4  |-  F/ x ph
2 csbeq2d.2 . . . . 5  |-  ( ph  ->  B  =  C )
32eleq2d 2276 . . . 4  |-  ( ph  ->  ( y  e.  B  <->  y  e.  C ) )
41, 3sbcbid 3057 . . 3  |-  ( ph  ->  ( [. A  /  x ]. y  e.  B  <->  [. A  /  x ]. y  e.  C )
)
54abbidv 2324 . 2  |-  ( ph  ->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  |  [. A  /  x ]. y  e.  C } )
6 df-csb 3095 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
7 df-csb 3095 . 2  |-  [_ A  /  x ]_ C  =  { y  |  [. A  /  x ]. y  e.  C }
85, 6, 73eqtr4g 2264 1  |-  ( ph  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   F/wnf 1484    e. wcel 2177   {cab 2192   [.wsbc 2999   [_csb 3094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-sbc 3000  df-csb 3095
This theorem is referenced by:  csbeq2dv  3120
  Copyright terms: Public domain W3C validator