Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbeq2d | Unicode version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2d.1 | |
csbeq2d.2 |
Ref | Expression |
---|---|
csbeq2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2d.1 | . . . 4 | |
2 | csbeq2d.2 | . . . . 5 | |
3 | 2 | eleq2d 2240 | . . . 4 |
4 | 1, 3 | sbcbid 3012 | . . 3 |
5 | 4 | abbidv 2288 | . 2 |
6 | df-csb 3050 | . 2 | |
7 | df-csb 3050 | . 2 | |
8 | 5, 6, 7 | 3eqtr4g 2228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wnf 1453 wcel 2141 cab 2156 wsbc 2955 csb 3049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-sbc 2956 df-csb 3050 |
This theorem is referenced by: csbeq2dv 3075 |
Copyright terms: Public domain | W3C validator |