ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbeq2d GIF version

Theorem csbeq2d 3074
Description: Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
csbeq2d.1 𝑥𝜑
csbeq2d.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
csbeq2d (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)

Proof of Theorem csbeq2d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq2d.1 . . . 4 𝑥𝜑
2 csbeq2d.2 . . . . 5 (𝜑𝐵 = 𝐶)
32eleq2d 2240 . . . 4 (𝜑 → (𝑦𝐵𝑦𝐶))
41, 3sbcbid 3012 . . 3 (𝜑 → ([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶))
54abbidv 2288 . 2 (𝜑 → {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
6 df-csb 3050 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
7 df-csb 3050 . 2 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
85, 6, 73eqtr4g 2228 1 (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wnf 1453  wcel 2141  {cab 2156  [wsbc 2955  csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-sbc 2956  df-csb 3050
This theorem is referenced by:  csbeq2dv  3075
  Copyright terms: Public domain W3C validator