ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difidALT Unicode version

Theorem difidALT 3561
Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. Alternate proof of difid 3560. (Contributed by David Abernethy, 17-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
difidALT  |-  ( A 
\  A )  =  (/)

Proof of Theorem difidALT
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dfdif2 3205 . 2  |-  ( A 
\  A )  =  { x  e.  A  |  -.  x  e.  A }
2 dfnul3 3494 . 2  |-  (/)  =  {
x  e.  A  |  -.  x  e.  A }
31, 2eqtr4i 2253 1  |-  ( A 
\  A )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1395    e. wcel 2200   {crab 2512    \ cdif 3194   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-dif 3199  df-nul 3492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator