ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difidALT Unicode version

Theorem difidALT 3530
Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. Alternate proof of difid 3529. (Contributed by David Abernethy, 17-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
difidALT  |-  ( A 
\  A )  =  (/)

Proof of Theorem difidALT
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dfdif2 3174 . 2  |-  ( A 
\  A )  =  { x  e.  A  |  -.  x  e.  A }
2 dfnul3 3463 . 2  |-  (/)  =  {
x  e.  A  |  -.  x  e.  A }
31, 2eqtr4i 2229 1  |-  ( A 
\  A )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1373    e. wcel 2176   {crab 2488    \ cdif 3163   (/)c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-dif 3168  df-nul 3461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator