| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difeq2 | Unicode version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2260 |
. . . 4
| |
| 2 | 1 | notbid 668 |
. . 3
|
| 3 | 2 | rabbidv 2752 |
. 2
|
| 4 | dfdif2 3165 |
. 2
| |
| 5 | dfdif2 3165 |
. 2
| |
| 6 | 3, 4, 5 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-rab 2484 df-dif 3159 |
| This theorem is referenced by: difeq12 3276 difeq2i 3278 difeq2d 3281 disjdif2 3529 ssdifeq0 3533 2oconcl 6497 diffitest 6948 diffifi 6955 undifdc 6985 sbthlem2 7024 isbth 7033 difinfinf 7167 ismkvnex 7221 iscld 14339 |
| Copyright terms: Public domain | W3C validator |