ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq2 Unicode version

Theorem difeq2 3239
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difeq2  |-  ( A  =  B  ->  ( C  \  A )  =  ( C  \  B
) )

Proof of Theorem difeq2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq2 2234 . . . 4  |-  ( A  =  B  ->  (
x  e.  A  <->  x  e.  B ) )
21notbid 662 . . 3  |-  ( A  =  B  ->  ( -.  x  e.  A  <->  -.  x  e.  B ) )
32rabbidv 2719 . 2  |-  ( A  =  B  ->  { x  e.  C  |  -.  x  e.  A }  =  { x  e.  C  |  -.  x  e.  B } )
4 dfdif2 3129 . 2  |-  ( C 
\  A )  =  { x  e.  C  |  -.  x  e.  A }
5 dfdif2 3129 . 2  |-  ( C 
\  B )  =  { x  e.  C  |  -.  x  e.  B }
63, 4, 53eqtr4g 2228 1  |-  ( A  =  B  ->  ( C  \  A )  =  ( C  \  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1348    e. wcel 2141   {crab 2452    \ cdif 3118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-rab 2457  df-dif 3123
This theorem is referenced by:  difeq12  3240  difeq2i  3242  difeq2d  3245  disjdif2  3493  ssdifeq0  3497  2oconcl  6418  diffitest  6865  diffifi  6872  undifdc  6901  sbthlem2  6935  isbth  6944  difinfinf  7078  ismkvnex  7131  iscld  12897
  Copyright terms: Public domain W3C validator