| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difeq2 | Unicode version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2293 |
. . . 4
| |
| 2 | 1 | notbid 671 |
. . 3
|
| 3 | 2 | rabbidv 2788 |
. 2
|
| 4 | dfdif2 3205 |
. 2
| |
| 5 | dfdif2 3205 |
. 2
| |
| 6 | 3, 4, 5 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-rab 2517 df-dif 3199 |
| This theorem is referenced by: difeq12 3317 difeq2i 3319 difeq2d 3322 disjdif2 3570 ssdifeq0 3574 2oconcl 6585 diffitest 7049 diffifi 7056 undifdc 7086 sbthlem2 7125 isbth 7134 difinfinf 7268 ismkvnex 7322 iscld 14777 |
| Copyright terms: Public domain | W3C validator |