ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq2 Unicode version

Theorem difeq2 3285
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difeq2  |-  ( A  =  B  ->  ( C  \  A )  =  ( C  \  B
) )

Proof of Theorem difeq2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq2 2269 . . . 4  |-  ( A  =  B  ->  (
x  e.  A  <->  x  e.  B ) )
21notbid 669 . . 3  |-  ( A  =  B  ->  ( -.  x  e.  A  <->  -.  x  e.  B ) )
32rabbidv 2761 . 2  |-  ( A  =  B  ->  { x  e.  C  |  -.  x  e.  A }  =  { x  e.  C  |  -.  x  e.  B } )
4 dfdif2 3174 . 2  |-  ( C 
\  A )  =  { x  e.  C  |  -.  x  e.  A }
5 dfdif2 3174 . 2  |-  ( C 
\  B )  =  { x  e.  C  |  -.  x  e.  B }
63, 4, 53eqtr4g 2263 1  |-  ( A  =  B  ->  ( C  \  A )  =  ( C  \  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1373    e. wcel 2176   {crab 2488    \ cdif 3163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-ral 2489  df-rab 2493  df-dif 3168
This theorem is referenced by:  difeq12  3286  difeq2i  3288  difeq2d  3291  disjdif2  3539  ssdifeq0  3543  2oconcl  6525  diffitest  6984  diffifi  6991  undifdc  7021  sbthlem2  7060  isbth  7069  difinfinf  7203  ismkvnex  7257  iscld  14575
  Copyright terms: Public domain W3C validator