Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difeq2 | Unicode version |
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2230 | . . . 4 | |
2 | 1 | notbid 657 | . . 3 |
3 | 2 | rabbidv 2715 | . 2 |
4 | dfdif2 3124 | . 2 | |
5 | dfdif2 3124 | . 2 | |
6 | 3, 4, 5 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1343 wcel 2136 crab 2448 cdif 3113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-ral 2449 df-rab 2453 df-dif 3118 |
This theorem is referenced by: difeq12 3235 difeq2i 3237 difeq2d 3240 disjdif2 3487 ssdifeq0 3491 2oconcl 6407 diffitest 6853 diffifi 6860 undifdc 6889 sbthlem2 6923 isbth 6932 difinfinf 7066 ismkvnex 7119 iscld 12743 |
Copyright terms: Public domain | W3C validator |