ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq2 Unicode version

Theorem difeq2 3234
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difeq2  |-  ( A  =  B  ->  ( C  \  A )  =  ( C  \  B
) )

Proof of Theorem difeq2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq2 2230 . . . 4  |-  ( A  =  B  ->  (
x  e.  A  <->  x  e.  B ) )
21notbid 657 . . 3  |-  ( A  =  B  ->  ( -.  x  e.  A  <->  -.  x  e.  B ) )
32rabbidv 2715 . 2  |-  ( A  =  B  ->  { x  e.  C  |  -.  x  e.  A }  =  { x  e.  C  |  -.  x  e.  B } )
4 dfdif2 3124 . 2  |-  ( C 
\  A )  =  { x  e.  C  |  -.  x  e.  A }
5 dfdif2 3124 . 2  |-  ( C 
\  B )  =  { x  e.  C  |  -.  x  e.  B }
63, 4, 53eqtr4g 2224 1  |-  ( A  =  B  ->  ( C  \  A )  =  ( C  \  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1343    e. wcel 2136   {crab 2448    \ cdif 3113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-ral 2449  df-rab 2453  df-dif 3118
This theorem is referenced by:  difeq12  3235  difeq2i  3237  difeq2d  3240  disjdif2  3487  ssdifeq0  3491  2oconcl  6407  diffitest  6853  diffifi  6860  undifdc  6889  sbthlem2  6923  isbth  6932  difinfinf  7066  ismkvnex  7119  iscld  12743
  Copyright terms: Public domain W3C validator