| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difeq2 | Unicode version | ||
| Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2269 |
. . . 4
| |
| 2 | 1 | notbid 669 |
. . 3
|
| 3 | 2 | rabbidv 2761 |
. 2
|
| 4 | dfdif2 3174 |
. 2
| |
| 5 | dfdif2 3174 |
. 2
| |
| 6 | 3, 4, 5 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-ral 2489 df-rab 2493 df-dif 3168 |
| This theorem is referenced by: difeq12 3286 difeq2i 3288 difeq2d 3291 disjdif2 3539 ssdifeq0 3543 2oconcl 6525 diffitest 6984 diffifi 6991 undifdc 7021 sbthlem2 7060 isbth 7069 difinfinf 7203 ismkvnex 7257 iscld 14575 |
| Copyright terms: Public domain | W3C validator |