| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldif | Unicode version | ||
| Description: Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| eldif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | elex 2774 |
. . 3
| |
| 3 | 2 | adantr 276 |
. 2
|
| 4 | eleq1 2259 |
. . . 4
| |
| 5 | eleq1 2259 |
. . . . 5
| |
| 6 | 5 | notbid 668 |
. . . 4
|
| 7 | 4, 6 | anbi12d 473 |
. . 3
|
| 8 | df-dif 3159 |
. . 3
| |
| 9 | 7, 8 | elab2g 2911 |
. 2
|
| 10 | 1, 3, 9 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 |
| This theorem is referenced by: eldifd 3167 eldifad 3168 eldifbd 3169 difeqri 3283 eldifi 3285 eldifn 3286 difdif 3288 ddifstab 3295 ssconb 3296 sscon 3297 ssdif 3298 raldifb 3303 dfss4st 3396 ssddif 3397 unssdif 3398 inssdif 3399 difin 3400 unssin 3402 inssun 3403 invdif 3405 indif 3406 difundi 3415 difindiss 3417 indifdir 3419 undif3ss 3424 difin2 3425 symdifxor 3429 dfnul2 3452 reldisj 3502 disj3 3503 undif4 3513 ssdif0im 3515 inssdif0im 3518 ssundifim 3534 eldifpr 3649 eldiftp 3668 eldifsn 3749 difprsnss 3760 iundif2ss 3982 iindif2m 3984 brdif 4086 unidif0 4200 eldifpw 4512 elirr 4577 en2lp 4590 difopab 4799 intirr 5056 cnvdif 5076 imadiflem 5337 imadif 5338 elfi2 7038 xrlenlt 8091 nzadd 9378 irradd 9720 irrmul 9721 fzdifsuc 10156 fisumss 11557 prodssdc 11754 fprodssdc 11755 inffinp1 12646 bj-charfunr 15456 |
| Copyright terms: Public domain | W3C validator |