ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfin5 Unicode version

Theorem dfin5 3109
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
Assertion
Ref Expression
dfin5  |-  ( A  i^i  B )  =  { x  e.  A  |  x  e.  B }
Distinct variable groups:    x, A    x, B

Proof of Theorem dfin5
StepHypRef Expression
1 df-in 3108 . 2  |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B ) }
2 df-rab 2444 . 2  |-  { x  e.  A  |  x  e.  B }  =  {
x  |  ( x  e.  A  /\  x  e.  B ) }
31, 2eqtr4i 2181 1  |-  ( A  i^i  B )  =  { x  e.  A  |  x  e.  B }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1335    e. wcel 2128   {cab 2143   {crab 2439    i^i cin 3101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-4 1490  ax-17 1506  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-cleq 2150  df-rab 2444  df-in 3108
This theorem is referenced by:  nfin  3313  rabbi2dva  3315  ssfidc  6876  nninfdcex  11833  znnen  12114  nnmindc  12164  nnminle  12165  bj-inex  13469
  Copyright terms: Public domain W3C validator