ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfin5 Unicode version

Theorem dfin5 3173
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
Assertion
Ref Expression
dfin5  |-  ( A  i^i  B )  =  { x  e.  A  |  x  e.  B }
Distinct variable groups:    x, A    x, B

Proof of Theorem dfin5
StepHypRef Expression
1 df-in 3172 . 2  |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B ) }
2 df-rab 2493 . 2  |-  { x  e.  A  |  x  e.  B }  =  {
x  |  ( x  e.  A  /\  x  e.  B ) }
31, 2eqtr4i 2229 1  |-  ( A  i^i  B )  =  { x  e.  A  |  x  e.  B }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2176   {cab 2191   {crab 2488    i^i cin 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-4 1533  ax-17 1549  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-rab 2493  df-in 3172
This theorem is referenced by:  nfin  3379  rabbi2dva  3381  ssfidc  7034  suprzubdc  10379  nninfdcex  10380  nnmindc  12355  nnminle  12356  znnen  12769  bj-inex  15843  2omap  15932
  Copyright terms: Public domain W3C validator