Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfdif | Unicode version |
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
nfdif.1 | |
nfdif.2 |
Ref | Expression |
---|---|
nfdif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdif2 3135 | . 2 | |
2 | nfdif.2 | . . . . 5 | |
3 | 2 | nfcri 2311 | . . . 4 |
4 | 3 | nfn 1656 | . . 3 |
5 | nfdif.1 | . . 3 | |
6 | 4, 5 | nfrabxy 2655 | . 2 |
7 | 1, 6 | nfcxfr 2314 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wcel 2146 wnfc 2304 crab 2457 cdif 3124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rab 2462 df-dif 3129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |