ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdif Unicode version

Theorem nfdif 3122
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
nfdif.1  |-  F/_ x A
nfdif.2  |-  F/_ x B
Assertion
Ref Expression
nfdif  |-  F/_ x
( A  \  B
)

Proof of Theorem nfdif
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfdif2 3008 . 2  |-  ( A 
\  B )  =  { y  e.  A  |  -.  y  e.  B }
2 nfdif.2 . . . . 5  |-  F/_ x B
32nfcri 2223 . . . 4  |-  F/ x  y  e.  B
43nfn 1594 . . 3  |-  F/ x  -.  y  e.  B
5 nfdif.1 . . 3  |-  F/_ x A
64, 5nfrabxy 2548 . 2  |-  F/_ x { y  e.  A  |  -.  y  e.  B }
71, 6nfcxfr 2226 1  |-  F/_ x
( A  \  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 1439   F/_wnfc 2216   {crab 2364    \ cdif 2997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rab 2369  df-dif 3002
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator