| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidomniim | Unicode version | ||
| Description: Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7305. (Contributed by Jim Kingdon, 29-Jun-2022.) |
| Ref | Expression |
|---|---|
| exmidomniim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidexmid 4279 |
. . . . . . . . 9
| |
| 2 | exmiddc 841 |
. . . . . . . . 9
| |
| 3 | 1, 2 | syl 14 |
. . . . . . . 8
|
| 4 | 3 | orcomd 734 |
. . . . . . 7
|
| 5 | 4 | adantr 276 |
. . . . . 6
|
| 6 | ffvelcdm 5767 |
. . . . . . . . . . . . . 14
| |
| 7 | df2o3 6574 |
. . . . . . . . . . . . . 14
| |
| 8 | 6, 7 | eleqtrdi 2322 |
. . . . . . . . . . . . 13
|
| 9 | elpri 3689 |
. . . . . . . . . . . . 13
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . . . . 12
|
| 11 | 10 | ord 729 |
. . . . . . . . . . 11
|
| 12 | 11 | ralimdva 2597 |
. . . . . . . . . 10
|
| 13 | 12 | con3d 634 |
. . . . . . . . 9
|
| 14 | 13 | adantl 277 |
. . . . . . . 8
|
| 15 | exmidexmid 4279 |
. . . . . . . . . 10
| |
| 16 | dfrex2dc 2521 |
. . . . . . . . . 10
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . . 9
|
| 18 | 17 | adantr 276 |
. . . . . . . 8
|
| 19 | 14, 18 | sylibrd 169 |
. . . . . . 7
|
| 20 | 19 | orim1d 792 |
. . . . . 6
|
| 21 | 5, 20 | mpd 13 |
. . . . 5
|
| 22 | 21 | ex 115 |
. . . 4
|
| 23 | 22 | alrimiv 1920 |
. . 3
|
| 24 | isomni 7299 |
. . . 4
| |
| 25 | 24 | elv 2803 |
. . 3
|
| 26 | 23, 25 | sylibr 134 |
. 2
|
| 27 | 26 | alrimiv 1920 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-exmid 4278 df-id 4383 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-1o 6560 df-2o 6561 df-omni 7298 |
| This theorem is referenced by: exmidomni 7305 |
| Copyright terms: Public domain | W3C validator |