| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exmidomniim | Unicode version | ||
| Description: Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7208. (Contributed by Jim Kingdon, 29-Jun-2022.) | 
| Ref | Expression | 
|---|---|
| exmidomniim | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exmidexmid 4229 | 
. . . . . . . . 9
 | |
| 2 | exmiddc 837 | 
. . . . . . . . 9
 | |
| 3 | 1, 2 | syl 14 | 
. . . . . . . 8
 | 
| 4 | 3 | orcomd 730 | 
. . . . . . 7
 | 
| 5 | 4 | adantr 276 | 
. . . . . 6
 | 
| 6 | ffvelcdm 5695 | 
. . . . . . . . . . . . . 14
 | |
| 7 | df2o3 6488 | 
. . . . . . . . . . . . . 14
 | |
| 8 | 6, 7 | eleqtrdi 2289 | 
. . . . . . . . . . . . 13
 | 
| 9 | elpri 3645 | 
. . . . . . . . . . . . 13
 | |
| 10 | 8, 9 | syl 14 | 
. . . . . . . . . . . 12
 | 
| 11 | 10 | ord 725 | 
. . . . . . . . . . 11
 | 
| 12 | 11 | ralimdva 2564 | 
. . . . . . . . . 10
 | 
| 13 | 12 | con3d 632 | 
. . . . . . . . 9
 | 
| 14 | 13 | adantl 277 | 
. . . . . . . 8
 | 
| 15 | exmidexmid 4229 | 
. . . . . . . . . 10
 | |
| 16 | dfrex2dc 2488 | 
. . . . . . . . . 10
 | |
| 17 | 15, 16 | syl 14 | 
. . . . . . . . 9
 | 
| 18 | 17 | adantr 276 | 
. . . . . . . 8
 | 
| 19 | 14, 18 | sylibrd 169 | 
. . . . . . 7
 | 
| 20 | 19 | orim1d 788 | 
. . . . . 6
 | 
| 21 | 5, 20 | mpd 13 | 
. . . . 5
 | 
| 22 | 21 | ex 115 | 
. . . 4
 | 
| 23 | 22 | alrimiv 1888 | 
. . 3
 | 
| 24 | isomni 7202 | 
. . . 4
 | |
| 25 | 24 | elv 2767 | 
. . 3
 | 
| 26 | 23, 25 | sylibr 134 | 
. 2
 | 
| 27 | 26 | alrimiv 1888 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-exmid 4228 df-id 4328 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-1o 6474 df-2o 6475 df-omni 7201 | 
| This theorem is referenced by: exmidomni 7208 | 
| Copyright terms: Public domain | W3C validator |