| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidomniim | Unicode version | ||
| Description: Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7226. (Contributed by Jim Kingdon, 29-Jun-2022.) |
| Ref | Expression |
|---|---|
| exmidomniim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidexmid 4239 |
. . . . . . . . 9
| |
| 2 | exmiddc 837 |
. . . . . . . . 9
| |
| 3 | 1, 2 | syl 14 |
. . . . . . . 8
|
| 4 | 3 | orcomd 730 |
. . . . . . 7
|
| 5 | 4 | adantr 276 |
. . . . . 6
|
| 6 | ffvelcdm 5707 |
. . . . . . . . . . . . . 14
| |
| 7 | df2o3 6506 |
. . . . . . . . . . . . . 14
| |
| 8 | 6, 7 | eleqtrdi 2297 |
. . . . . . . . . . . . 13
|
| 9 | elpri 3655 |
. . . . . . . . . . . . 13
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . . . . 12
|
| 11 | 10 | ord 725 |
. . . . . . . . . . 11
|
| 12 | 11 | ralimdva 2572 |
. . . . . . . . . 10
|
| 13 | 12 | con3d 632 |
. . . . . . . . 9
|
| 14 | 13 | adantl 277 |
. . . . . . . 8
|
| 15 | exmidexmid 4239 |
. . . . . . . . . 10
| |
| 16 | dfrex2dc 2496 |
. . . . . . . . . 10
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . . 9
|
| 18 | 17 | adantr 276 |
. . . . . . . 8
|
| 19 | 14, 18 | sylibrd 169 |
. . . . . . 7
|
| 20 | 19 | orim1d 788 |
. . . . . 6
|
| 21 | 5, 20 | mpd 13 |
. . . . 5
|
| 22 | 21 | ex 115 |
. . . 4
|
| 23 | 22 | alrimiv 1896 |
. . 3
|
| 24 | isomni 7220 |
. . . 4
| |
| 25 | 24 | elv 2775 |
. . 3
|
| 26 | 23, 25 | sylibr 134 |
. 2
|
| 27 | 26 | alrimiv 1896 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-exmid 4238 df-id 4338 df-suc 4416 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-1o 6492 df-2o 6493 df-omni 7219 |
| This theorem is referenced by: exmidomni 7226 |
| Copyright terms: Public domain | W3C validator |