| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidomniim | Unicode version | ||
| Description: Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7259. (Contributed by Jim Kingdon, 29-Jun-2022.) |
| Ref | Expression |
|---|---|
| exmidomniim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidexmid 4248 |
. . . . . . . . 9
| |
| 2 | exmiddc 838 |
. . . . . . . . 9
| |
| 3 | 1, 2 | syl 14 |
. . . . . . . 8
|
| 4 | 3 | orcomd 731 |
. . . . . . 7
|
| 5 | 4 | adantr 276 |
. . . . . 6
|
| 6 | ffvelcdm 5726 |
. . . . . . . . . . . . . 14
| |
| 7 | df2o3 6529 |
. . . . . . . . . . . . . 14
| |
| 8 | 6, 7 | eleqtrdi 2299 |
. . . . . . . . . . . . 13
|
| 9 | elpri 3661 |
. . . . . . . . . . . . 13
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . . . . 12
|
| 11 | 10 | ord 726 |
. . . . . . . . . . 11
|
| 12 | 11 | ralimdva 2574 |
. . . . . . . . . 10
|
| 13 | 12 | con3d 632 |
. . . . . . . . 9
|
| 14 | 13 | adantl 277 |
. . . . . . . 8
|
| 15 | exmidexmid 4248 |
. . . . . . . . . 10
| |
| 16 | dfrex2dc 2498 |
. . . . . . . . . 10
| |
| 17 | 15, 16 | syl 14 |
. . . . . . . . 9
|
| 18 | 17 | adantr 276 |
. . . . . . . 8
|
| 19 | 14, 18 | sylibrd 169 |
. . . . . . 7
|
| 20 | 19 | orim1d 789 |
. . . . . 6
|
| 21 | 5, 20 | mpd 13 |
. . . . 5
|
| 22 | 21 | ex 115 |
. . . 4
|
| 23 | 22 | alrimiv 1898 |
. . 3
|
| 24 | isomni 7253 |
. . . 4
| |
| 25 | 24 | elv 2777 |
. . 3
|
| 26 | 23, 25 | sylibr 134 |
. 2
|
| 27 | 26 | alrimiv 1898 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-exmid 4247 df-id 4348 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-1o 6515 df-2o 6516 df-omni 7252 |
| This theorem is referenced by: exmidomni 7259 |
| Copyright terms: Public domain | W3C validator |