ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidomniim Unicode version

Theorem exmidomniim 7304
Description: Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7305. (Contributed by Jim Kingdon, 29-Jun-2022.)
Assertion
Ref Expression
exmidomniim  |-  (EXMID  ->  A. x  x  e. Omni )

Proof of Theorem exmidomniim
Dummy variables  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exmidexmid 4279 . . . . . . . . 9  |-  (EXMID  -> DECID  A. y  e.  x  ( f `  y
)  =  1o )
2 exmiddc 841 . . . . . . . . 9  |-  (DECID  A. y  e.  x  ( f `  y )  =  1o 
->  ( A. y  e.  x  ( f `  y )  =  1o  \/  -.  A. y  e.  x  ( f `  y )  =  1o ) )
31, 2syl 14 . . . . . . . 8  |-  (EXMID  ->  ( A. y  e.  x  ( f `  y
)  =  1o  \/  -.  A. y  e.  x  ( f `  y
)  =  1o ) )
43orcomd 734 . . . . . . 7  |-  (EXMID  ->  ( -.  A. y  e.  x  ( f `  y
)  =  1o  \/  A. y  e.  x  ( f `  y )  =  1o ) )
54adantr 276 . . . . . 6  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( -.  A. y  e.  x  (
f `  y )  =  1o  \/  A. y  e.  x  ( f `  y )  =  1o ) )
6 ffvelcdm 5767 . . . . . . . . . . . . . 14  |-  ( ( f : x --> 2o  /\  y  e.  x )  ->  ( f `  y
)  e.  2o )
7 df2o3 6574 . . . . . . . . . . . . . 14  |-  2o  =  { (/) ,  1o }
86, 7eleqtrdi 2322 . . . . . . . . . . . . 13  |-  ( ( f : x --> 2o  /\  y  e.  x )  ->  ( f `  y
)  e.  { (/) ,  1o } )
9 elpri 3689 . . . . . . . . . . . . 13  |-  ( ( f `  y )  e.  { (/) ,  1o }  ->  ( ( f `
 y )  =  (/)  \/  ( f `  y )  =  1o ) )
108, 9syl 14 . . . . . . . . . . . 12  |-  ( ( f : x --> 2o  /\  y  e.  x )  ->  ( ( f `  y )  =  (/)  \/  ( f `  y
)  =  1o ) )
1110ord 729 . . . . . . . . . . 11  |-  ( ( f : x --> 2o  /\  y  e.  x )  ->  ( -.  ( f `
 y )  =  (/)  ->  ( f `  y )  =  1o ) )
1211ralimdva 2597 . . . . . . . . . 10  |-  ( f : x --> 2o  ->  ( A. y  e.  x  -.  ( f `  y
)  =  (/)  ->  A. y  e.  x  ( f `  y )  =  1o ) )
1312con3d 634 . . . . . . . . 9  |-  ( f : x --> 2o  ->  ( -.  A. y  e.  x  ( f `  y )  =  1o 
->  -.  A. y  e.  x  -.  ( f `
 y )  =  (/) ) )
1413adantl 277 . . . . . . . 8  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( -.  A. y  e.  x  (
f `  y )  =  1o  ->  -.  A. y  e.  x  -.  ( f `  y
)  =  (/) ) )
15 exmidexmid 4279 . . . . . . . . . 10  |-  (EXMID  -> DECID  E. y  e.  x  ( f `  y
)  =  (/) )
16 dfrex2dc 2521 . . . . . . . . . 10  |-  (DECID  E. y  e.  x  ( f `  y )  =  (/)  ->  ( E. y  e.  x  ( f `  y )  =  (/)  <->  -.  A. y  e.  x  -.  ( f `  y
)  =  (/) ) )
1715, 16syl 14 . . . . . . . . 9  |-  (EXMID  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  <->  -.  A. y  e.  x  -.  (
f `  y )  =  (/) ) )
1817adantr 276 . . . . . . . 8  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( E. y  e.  x  ( f `  y )  =  (/)  <->  -.  A. y  e.  x  -.  ( f `  y
)  =  (/) ) )
1914, 18sylibrd 169 . . . . . . 7  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( -.  A. y  e.  x  (
f `  y )  =  1o  ->  E. y  e.  x  ( f `  y )  =  (/) ) )
2019orim1d 792 . . . . . 6  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( ( -. 
A. y  e.  x  ( f `  y
)  =  1o  \/  A. y  e.  x  ( f `  y )  =  1o )  -> 
( E. y  e.  x  ( f `  y )  =  (/)  \/ 
A. y  e.  x  ( f `  y
)  =  1o ) ) )
215, 20mpd 13 . . . . 5  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( E. y  e.  x  ( f `  y )  =  (/)  \/ 
A. y  e.  x  ( f `  y
)  =  1o ) )
2221ex 115 . . . 4  |-  (EXMID  ->  (
f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) )
2322alrimiv 1920 . . 3  |-  (EXMID  ->  A. f
( f : x --> 2o  ->  ( E. y  e.  x  (
f `  y )  =  (/)  \/  A. y  e.  x  ( f `  y )  =  1o ) ) )
24 isomni 7299 . . . 4  |-  ( x  e.  _V  ->  (
x  e. Omni  <->  A. f ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) ) )
2524elv 2803 . . 3  |-  ( x  e. Omni 
<-> 
A. f ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) )
2623, 25sylibr 134 . 2  |-  (EXMID  ->  x  e. Omni )
2726alrimiv 1920 1  |-  (EXMID  ->  A. x  x  e. Omni )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839   A.wal 1393    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   _Vcvv 2799   (/)c0 3491   {cpr 3667  EXMIDwem 4277   -->wf 5313   ` cfv 5317   1oc1o 6553   2oc2o 6554  Omnicomni 7297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-exmid 4278  df-id 4383  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-1o 6560  df-2o 6561  df-omni 7298
This theorem is referenced by:  exmidomni  7305
  Copyright terms: Public domain W3C validator