ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidomniim Unicode version

Theorem exmidomniim 7117
Description: Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7118. (Contributed by Jim Kingdon, 29-Jun-2022.)
Assertion
Ref Expression
exmidomniim  |-  (EXMID  ->  A. x  x  e. Omni )

Proof of Theorem exmidomniim
Dummy variables  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exmidexmid 4182 . . . . . . . . 9  |-  (EXMID  -> DECID  A. y  e.  x  ( f `  y
)  =  1o )
2 exmiddc 831 . . . . . . . . 9  |-  (DECID  A. y  e.  x  ( f `  y )  =  1o 
->  ( A. y  e.  x  ( f `  y )  =  1o  \/  -.  A. y  e.  x  ( f `  y )  =  1o ) )
31, 2syl 14 . . . . . . . 8  |-  (EXMID  ->  ( A. y  e.  x  ( f `  y
)  =  1o  \/  -.  A. y  e.  x  ( f `  y
)  =  1o ) )
43orcomd 724 . . . . . . 7  |-  (EXMID  ->  ( -.  A. y  e.  x  ( f `  y
)  =  1o  \/  A. y  e.  x  ( f `  y )  =  1o ) )
54adantr 274 . . . . . 6  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( -.  A. y  e.  x  (
f `  y )  =  1o  \/  A. y  e.  x  ( f `  y )  =  1o ) )
6 ffvelrn 5629 . . . . . . . . . . . . . 14  |-  ( ( f : x --> 2o  /\  y  e.  x )  ->  ( f `  y
)  e.  2o )
7 df2o3 6409 . . . . . . . . . . . . . 14  |-  2o  =  { (/) ,  1o }
86, 7eleqtrdi 2263 . . . . . . . . . . . . 13  |-  ( ( f : x --> 2o  /\  y  e.  x )  ->  ( f `  y
)  e.  { (/) ,  1o } )
9 elpri 3606 . . . . . . . . . . . . 13  |-  ( ( f `  y )  e.  { (/) ,  1o }  ->  ( ( f `
 y )  =  (/)  \/  ( f `  y )  =  1o ) )
108, 9syl 14 . . . . . . . . . . . 12  |-  ( ( f : x --> 2o  /\  y  e.  x )  ->  ( ( f `  y )  =  (/)  \/  ( f `  y
)  =  1o ) )
1110ord 719 . . . . . . . . . . 11  |-  ( ( f : x --> 2o  /\  y  e.  x )  ->  ( -.  ( f `
 y )  =  (/)  ->  ( f `  y )  =  1o ) )
1211ralimdva 2537 . . . . . . . . . 10  |-  ( f : x --> 2o  ->  ( A. y  e.  x  -.  ( f `  y
)  =  (/)  ->  A. y  e.  x  ( f `  y )  =  1o ) )
1312con3d 626 . . . . . . . . 9  |-  ( f : x --> 2o  ->  ( -.  A. y  e.  x  ( f `  y )  =  1o 
->  -.  A. y  e.  x  -.  ( f `
 y )  =  (/) ) )
1413adantl 275 . . . . . . . 8  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( -.  A. y  e.  x  (
f `  y )  =  1o  ->  -.  A. y  e.  x  -.  ( f `  y
)  =  (/) ) )
15 exmidexmid 4182 . . . . . . . . . 10  |-  (EXMID  -> DECID  E. y  e.  x  ( f `  y
)  =  (/) )
16 dfrex2dc 2461 . . . . . . . . . 10  |-  (DECID  E. y  e.  x  ( f `  y )  =  (/)  ->  ( E. y  e.  x  ( f `  y )  =  (/)  <->  -.  A. y  e.  x  -.  ( f `  y
)  =  (/) ) )
1715, 16syl 14 . . . . . . . . 9  |-  (EXMID  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  <->  -.  A. y  e.  x  -.  (
f `  y )  =  (/) ) )
1817adantr 274 . . . . . . . 8  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( E. y  e.  x  ( f `  y )  =  (/)  <->  -.  A. y  e.  x  -.  ( f `  y
)  =  (/) ) )
1914, 18sylibrd 168 . . . . . . 7  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( -.  A. y  e.  x  (
f `  y )  =  1o  ->  E. y  e.  x  ( f `  y )  =  (/) ) )
2019orim1d 782 . . . . . 6  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( ( -. 
A. y  e.  x  ( f `  y
)  =  1o  \/  A. y  e.  x  ( f `  y )  =  1o )  -> 
( E. y  e.  x  ( f `  y )  =  (/)  \/ 
A. y  e.  x  ( f `  y
)  =  1o ) ) )
215, 20mpd 13 . . . . 5  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( E. y  e.  x  ( f `  y )  =  (/)  \/ 
A. y  e.  x  ( f `  y
)  =  1o ) )
2221ex 114 . . . 4  |-  (EXMID  ->  (
f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) )
2322alrimiv 1867 . . 3  |-  (EXMID  ->  A. f
( f : x --> 2o  ->  ( E. y  e.  x  (
f `  y )  =  (/)  \/  A. y  e.  x  ( f `  y )  =  1o ) ) )
24 isomni 7112 . . . 4  |-  ( x  e.  _V  ->  (
x  e. Omni  <->  A. f ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) ) )
2524elv 2734 . . 3  |-  ( x  e. Omni 
<-> 
A. f ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) )
2623, 25sylibr 133 . 2  |-  (EXMID  ->  x  e. Omni )
2726alrimiv 1867 1  |-  (EXMID  ->  A. x  x  e. Omni )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829   A.wal 1346    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   _Vcvv 2730   (/)c0 3414   {cpr 3584  EXMIDwem 4180   -->wf 5194   ` cfv 5198   1oc1o 6388   2oc2o 6389  Omnicomni 7110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-exmid 4181  df-id 4278  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-1o 6395  df-2o 6396  df-omni 7111
This theorem is referenced by:  exmidomni  7118
  Copyright terms: Public domain W3C validator