ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidomniim Unicode version

Theorem exmidomniim 7207
Description: Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7208. (Contributed by Jim Kingdon, 29-Jun-2022.)
Assertion
Ref Expression
exmidomniim  |-  (EXMID  ->  A. x  x  e. Omni )

Proof of Theorem exmidomniim
Dummy variables  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exmidexmid 4229 . . . . . . . . 9  |-  (EXMID  -> DECID  A. y  e.  x  ( f `  y
)  =  1o )
2 exmiddc 837 . . . . . . . . 9  |-  (DECID  A. y  e.  x  ( f `  y )  =  1o 
->  ( A. y  e.  x  ( f `  y )  =  1o  \/  -.  A. y  e.  x  ( f `  y )  =  1o ) )
31, 2syl 14 . . . . . . . 8  |-  (EXMID  ->  ( A. y  e.  x  ( f `  y
)  =  1o  \/  -.  A. y  e.  x  ( f `  y
)  =  1o ) )
43orcomd 730 . . . . . . 7  |-  (EXMID  ->  ( -.  A. y  e.  x  ( f `  y
)  =  1o  \/  A. y  e.  x  ( f `  y )  =  1o ) )
54adantr 276 . . . . . 6  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( -.  A. y  e.  x  (
f `  y )  =  1o  \/  A. y  e.  x  ( f `  y )  =  1o ) )
6 ffvelcdm 5695 . . . . . . . . . . . . . 14  |-  ( ( f : x --> 2o  /\  y  e.  x )  ->  ( f `  y
)  e.  2o )
7 df2o3 6488 . . . . . . . . . . . . . 14  |-  2o  =  { (/) ,  1o }
86, 7eleqtrdi 2289 . . . . . . . . . . . . 13  |-  ( ( f : x --> 2o  /\  y  e.  x )  ->  ( f `  y
)  e.  { (/) ,  1o } )
9 elpri 3645 . . . . . . . . . . . . 13  |-  ( ( f `  y )  e.  { (/) ,  1o }  ->  ( ( f `
 y )  =  (/)  \/  ( f `  y )  =  1o ) )
108, 9syl 14 . . . . . . . . . . . 12  |-  ( ( f : x --> 2o  /\  y  e.  x )  ->  ( ( f `  y )  =  (/)  \/  ( f `  y
)  =  1o ) )
1110ord 725 . . . . . . . . . . 11  |-  ( ( f : x --> 2o  /\  y  e.  x )  ->  ( -.  ( f `
 y )  =  (/)  ->  ( f `  y )  =  1o ) )
1211ralimdva 2564 . . . . . . . . . 10  |-  ( f : x --> 2o  ->  ( A. y  e.  x  -.  ( f `  y
)  =  (/)  ->  A. y  e.  x  ( f `  y )  =  1o ) )
1312con3d 632 . . . . . . . . 9  |-  ( f : x --> 2o  ->  ( -.  A. y  e.  x  ( f `  y )  =  1o 
->  -.  A. y  e.  x  -.  ( f `
 y )  =  (/) ) )
1413adantl 277 . . . . . . . 8  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( -.  A. y  e.  x  (
f `  y )  =  1o  ->  -.  A. y  e.  x  -.  ( f `  y
)  =  (/) ) )
15 exmidexmid 4229 . . . . . . . . . 10  |-  (EXMID  -> DECID  E. y  e.  x  ( f `  y
)  =  (/) )
16 dfrex2dc 2488 . . . . . . . . . 10  |-  (DECID  E. y  e.  x  ( f `  y )  =  (/)  ->  ( E. y  e.  x  ( f `  y )  =  (/)  <->  -.  A. y  e.  x  -.  ( f `  y
)  =  (/) ) )
1715, 16syl 14 . . . . . . . . 9  |-  (EXMID  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  <->  -.  A. y  e.  x  -.  (
f `  y )  =  (/) ) )
1817adantr 276 . . . . . . . 8  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( E. y  e.  x  ( f `  y )  =  (/)  <->  -.  A. y  e.  x  -.  ( f `  y
)  =  (/) ) )
1914, 18sylibrd 169 . . . . . . 7  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( -.  A. y  e.  x  (
f `  y )  =  1o  ->  E. y  e.  x  ( f `  y )  =  (/) ) )
2019orim1d 788 . . . . . 6  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( ( -. 
A. y  e.  x  ( f `  y
)  =  1o  \/  A. y  e.  x  ( f `  y )  =  1o )  -> 
( E. y  e.  x  ( f `  y )  =  (/)  \/ 
A. y  e.  x  ( f `  y
)  =  1o ) ) )
215, 20mpd 13 . . . . 5  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( E. y  e.  x  ( f `  y )  =  (/)  \/ 
A. y  e.  x  ( f `  y
)  =  1o ) )
2221ex 115 . . . 4  |-  (EXMID  ->  (
f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) )
2322alrimiv 1888 . . 3  |-  (EXMID  ->  A. f
( f : x --> 2o  ->  ( E. y  e.  x  (
f `  y )  =  (/)  \/  A. y  e.  x  ( f `  y )  =  1o ) ) )
24 isomni 7202 . . . 4  |-  ( x  e.  _V  ->  (
x  e. Omni  <->  A. f ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) ) )
2524elv 2767 . . 3  |-  ( x  e. Omni 
<-> 
A. f ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) )
2623, 25sylibr 134 . 2  |-  (EXMID  ->  x  e. Omni )
2726alrimiv 1888 1  |-  (EXMID  ->  A. x  x  e. Omni )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835   A.wal 1362    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   _Vcvv 2763   (/)c0 3450   {cpr 3623  EXMIDwem 4227   -->wf 5254   ` cfv 5258   1oc1o 6467   2oc2o 6468  Omnicomni 7200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-exmid 4228  df-id 4328  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-1o 6474  df-2o 6475  df-omni 7201
This theorem is referenced by:  exmidomni  7208
  Copyright terms: Public domain W3C validator