Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidomniim | Unicode version |
Description: Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7106. (Contributed by Jim Kingdon, 29-Jun-2022.) |
Ref | Expression |
---|---|
exmidomniim | EXMID Omni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidexmid 4175 | . . . . . . . . 9 EXMID DECID | |
2 | exmiddc 826 | . . . . . . . . 9 DECID | |
3 | 1, 2 | syl 14 | . . . . . . . 8 EXMID |
4 | 3 | orcomd 719 | . . . . . . 7 EXMID |
5 | 4 | adantr 274 | . . . . . 6 EXMID |
6 | ffvelrn 5618 | . . . . . . . . . . . . . 14 | |
7 | df2o3 6398 | . . . . . . . . . . . . . 14 | |
8 | 6, 7 | eleqtrdi 2259 | . . . . . . . . . . . . 13 |
9 | elpri 3599 | . . . . . . . . . . . . 13 | |
10 | 8, 9 | syl 14 | . . . . . . . . . . . 12 |
11 | 10 | ord 714 | . . . . . . . . . . 11 |
12 | 11 | ralimdva 2533 | . . . . . . . . . 10 |
13 | 12 | con3d 621 | . . . . . . . . 9 |
14 | 13 | adantl 275 | . . . . . . . 8 EXMID |
15 | exmidexmid 4175 | . . . . . . . . . 10 EXMID DECID | |
16 | dfrex2dc 2457 | . . . . . . . . . 10 DECID | |
17 | 15, 16 | syl 14 | . . . . . . . . 9 EXMID |
18 | 17 | adantr 274 | . . . . . . . 8 EXMID |
19 | 14, 18 | sylibrd 168 | . . . . . . 7 EXMID |
20 | 19 | orim1d 777 | . . . . . 6 EXMID |
21 | 5, 20 | mpd 13 | . . . . 5 EXMID |
22 | 21 | ex 114 | . . . 4 EXMID |
23 | 22 | alrimiv 1862 | . . 3 EXMID |
24 | isomni 7100 | . . . 4 Omni | |
25 | 24 | elv 2730 | . . 3 Omni |
26 | 23, 25 | sylibr 133 | . 2 EXMID Omni |
27 | 26 | alrimiv 1862 | 1 EXMID Omni |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 wal 1341 wceq 1343 wcel 2136 wral 2444 wrex 2445 cvv 2726 c0 3409 cpr 3577 EXMIDwem 4173 wf 5184 cfv 5188 c1o 6377 c2o 6378 Omnicomni 7098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-exmid 4174 df-id 4271 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-1o 6384 df-2o 6385 df-omni 7099 |
This theorem is referenced by: exmidomni 7106 |
Copyright terms: Public domain | W3C validator |