ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidomniim Unicode version

Theorem exmidomniim 7200
Description: Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7201. (Contributed by Jim Kingdon, 29-Jun-2022.)
Assertion
Ref Expression
exmidomniim  |-  (EXMID  ->  A. x  x  e. Omni )

Proof of Theorem exmidomniim
Dummy variables  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exmidexmid 4225 . . . . . . . . 9  |-  (EXMID  -> DECID  A. y  e.  x  ( f `  y
)  =  1o )
2 exmiddc 837 . . . . . . . . 9  |-  (DECID  A. y  e.  x  ( f `  y )  =  1o 
->  ( A. y  e.  x  ( f `  y )  =  1o  \/  -.  A. y  e.  x  ( f `  y )  =  1o ) )
31, 2syl 14 . . . . . . . 8  |-  (EXMID  ->  ( A. y  e.  x  ( f `  y
)  =  1o  \/  -.  A. y  e.  x  ( f `  y
)  =  1o ) )
43orcomd 730 . . . . . . 7  |-  (EXMID  ->  ( -.  A. y  e.  x  ( f `  y
)  =  1o  \/  A. y  e.  x  ( f `  y )  =  1o ) )
54adantr 276 . . . . . 6  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( -.  A. y  e.  x  (
f `  y )  =  1o  \/  A. y  e.  x  ( f `  y )  =  1o ) )
6 ffvelcdm 5691 . . . . . . . . . . . . . 14  |-  ( ( f : x --> 2o  /\  y  e.  x )  ->  ( f `  y
)  e.  2o )
7 df2o3 6483 . . . . . . . . . . . . . 14  |-  2o  =  { (/) ,  1o }
86, 7eleqtrdi 2286 . . . . . . . . . . . . 13  |-  ( ( f : x --> 2o  /\  y  e.  x )  ->  ( f `  y
)  e.  { (/) ,  1o } )
9 elpri 3641 . . . . . . . . . . . . 13  |-  ( ( f `  y )  e.  { (/) ,  1o }  ->  ( ( f `
 y )  =  (/)  \/  ( f `  y )  =  1o ) )
108, 9syl 14 . . . . . . . . . . . 12  |-  ( ( f : x --> 2o  /\  y  e.  x )  ->  ( ( f `  y )  =  (/)  \/  ( f `  y
)  =  1o ) )
1110ord 725 . . . . . . . . . . 11  |-  ( ( f : x --> 2o  /\  y  e.  x )  ->  ( -.  ( f `
 y )  =  (/)  ->  ( f `  y )  =  1o ) )
1211ralimdva 2561 . . . . . . . . . 10  |-  ( f : x --> 2o  ->  ( A. y  e.  x  -.  ( f `  y
)  =  (/)  ->  A. y  e.  x  ( f `  y )  =  1o ) )
1312con3d 632 . . . . . . . . 9  |-  ( f : x --> 2o  ->  ( -.  A. y  e.  x  ( f `  y )  =  1o 
->  -.  A. y  e.  x  -.  ( f `
 y )  =  (/) ) )
1413adantl 277 . . . . . . . 8  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( -.  A. y  e.  x  (
f `  y )  =  1o  ->  -.  A. y  e.  x  -.  ( f `  y
)  =  (/) ) )
15 exmidexmid 4225 . . . . . . . . . 10  |-  (EXMID  -> DECID  E. y  e.  x  ( f `  y
)  =  (/) )
16 dfrex2dc 2485 . . . . . . . . . 10  |-  (DECID  E. y  e.  x  ( f `  y )  =  (/)  ->  ( E. y  e.  x  ( f `  y )  =  (/)  <->  -.  A. y  e.  x  -.  ( f `  y
)  =  (/) ) )
1715, 16syl 14 . . . . . . . . 9  |-  (EXMID  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  <->  -.  A. y  e.  x  -.  (
f `  y )  =  (/) ) )
1817adantr 276 . . . . . . . 8  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( E. y  e.  x  ( f `  y )  =  (/)  <->  -.  A. y  e.  x  -.  ( f `  y
)  =  (/) ) )
1914, 18sylibrd 169 . . . . . . 7  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( -.  A. y  e.  x  (
f `  y )  =  1o  ->  E. y  e.  x  ( f `  y )  =  (/) ) )
2019orim1d 788 . . . . . 6  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( ( -. 
A. y  e.  x  ( f `  y
)  =  1o  \/  A. y  e.  x  ( f `  y )  =  1o )  -> 
( E. y  e.  x  ( f `  y )  =  (/)  \/ 
A. y  e.  x  ( f `  y
)  =  1o ) ) )
215, 20mpd 13 . . . . 5  |-  ( (EXMID  /\  f : x --> 2o )  ->  ( E. y  e.  x  ( f `  y )  =  (/)  \/ 
A. y  e.  x  ( f `  y
)  =  1o ) )
2221ex 115 . . . 4  |-  (EXMID  ->  (
f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) )
2322alrimiv 1885 . . 3  |-  (EXMID  ->  A. f
( f : x --> 2o  ->  ( E. y  e.  x  (
f `  y )  =  (/)  \/  A. y  e.  x  ( f `  y )  =  1o ) ) )
24 isomni 7195 . . . 4  |-  ( x  e.  _V  ->  (
x  e. Omni  <->  A. f ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) ) )
2524elv 2764 . . 3  |-  ( x  e. Omni 
<-> 
A. f ( f : x --> 2o  ->  ( E. y  e.  x  ( f `  y
)  =  (/)  \/  A. y  e.  x  (
f `  y )  =  1o ) ) )
2623, 25sylibr 134 . 2  |-  (EXMID  ->  x  e. Omni )
2726alrimiv 1885 1  |-  (EXMID  ->  A. x  x  e. Omni )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835   A.wal 1362    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   _Vcvv 2760   (/)c0 3446   {cpr 3619  EXMIDwem 4223   -->wf 5250   ` cfv 5254   1oc1o 6462   2oc2o 6463  Omnicomni 7193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-exmid 4224  df-id 4324  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-1o 6469  df-2o 6470  df-omni 7194
This theorem is referenced by:  exmidomni  7201
  Copyright terms: Public domain W3C validator