ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrex2fin Unicode version

Theorem dfrex2fin 6790
Description: Relationship between universal and existential quantifiers over a finite set. Remark in Section 2.2.1 of [Pierik], p. 8. Although Pierik does not mention the decidability condition explicitly, it does say "only finitely many x to check" which means there must be some way of checking each value of x. (Contributed by Jim Kingdon, 11-Jul-2022.)
Assertion
Ref Expression
dfrex2fin  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  ->  ( E. x  e.  A  ph  <->  -.  A. x  e.  A  -.  ph )
)
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem dfrex2fin
StepHypRef Expression
1 finexdc 6789 . 2  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  -> DECID  E. x  e.  A  ph )
2 dfrex2dc 2426 . 2  |-  (DECID  E. x  e.  A  ph  ->  ( E. x  e.  A  ph  <->  -. 
A. x  e.  A  -.  ph ) )
31, 2syl 14 1  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  ->  ( E. x  e.  A  ph  <->  -.  A. x  e.  A  -.  ph )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 819    e. wcel 1480   A.wral 2414   E.wrex 2415   Fincfn 6627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-er 6422  df-en 6628  df-fin 6630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator