ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difindir Unicode version

Theorem difindir 3459
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difindir  |-  ( ( A  i^i  B ) 
\  C )  =  ( ( A  \  C )  i^i  ( B  \  C ) )

Proof of Theorem difindir
StepHypRef Expression
1 inindir 3422 . 2  |-  ( ( A  i^i  B )  i^i  ( _V  \  C ) )  =  ( ( A  i^i  ( _V  \  C ) )  i^i  ( B  i^i  ( _V  \  C ) ) )
2 invdif 3446 . 2  |-  ( ( A  i^i  B )  i^i  ( _V  \  C ) )  =  ( ( A  i^i  B )  \  C )
3 invdif 3446 . . 3  |-  ( A  i^i  ( _V  \  C ) )  =  ( A  \  C
)
4 invdif 3446 . . 3  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
53, 4ineq12i 3403 . 2  |-  ( ( A  i^i  ( _V 
\  C ) )  i^i  ( B  i^i  ( _V  \  C ) ) )  =  ( ( A  \  C
)  i^i  ( B  \  C ) )
61, 2, 53eqtr3i 2258 1  |-  ( ( A  i^i  B ) 
\  C )  =  ( ( A  \  C )  i^i  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1395   _Vcvv 2799    \ cdif 3194    i^i cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator