ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difindir Unicode version

Theorem difindir 3377
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difindir  |-  ( ( A  i^i  B ) 
\  C )  =  ( ( A  \  C )  i^i  ( B  \  C ) )

Proof of Theorem difindir
StepHypRef Expression
1 inindir 3340 . 2  |-  ( ( A  i^i  B )  i^i  ( _V  \  C ) )  =  ( ( A  i^i  ( _V  \  C ) )  i^i  ( B  i^i  ( _V  \  C ) ) )
2 invdif 3364 . 2  |-  ( ( A  i^i  B )  i^i  ( _V  \  C ) )  =  ( ( A  i^i  B )  \  C )
3 invdif 3364 . . 3  |-  ( A  i^i  ( _V  \  C ) )  =  ( A  \  C
)
4 invdif 3364 . . 3  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
53, 4ineq12i 3321 . 2  |-  ( ( A  i^i  ( _V 
\  C ) )  i^i  ( B  i^i  ( _V  \  C ) ) )  =  ( ( A  \  C
)  i^i  ( B  \  C ) )
61, 2, 53eqtr3i 2194 1  |-  ( ( A  i^i  B ) 
\  C )  =  ( ( A  \  C )  i^i  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1343   _Vcvv 2726    \ cdif 3113    i^i cin 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator