ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difindir Unicode version

Theorem difindir 3270
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difindir  |-  ( ( A  i^i  B ) 
\  C )  =  ( ( A  \  C )  i^i  ( B  \  C ) )

Proof of Theorem difindir
StepHypRef Expression
1 inindir 3233 . 2  |-  ( ( A  i^i  B )  i^i  ( _V  \  C ) )  =  ( ( A  i^i  ( _V  \  C ) )  i^i  ( B  i^i  ( _V  \  C ) ) )
2 invdif 3257 . 2  |-  ( ( A  i^i  B )  i^i  ( _V  \  C ) )  =  ( ( A  i^i  B )  \  C )
3 invdif 3257 . . 3  |-  ( A  i^i  ( _V  \  C ) )  =  ( A  \  C
)
4 invdif 3257 . . 3  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
53, 4ineq12i 3214 . 2  |-  ( ( A  i^i  ( _V 
\  C ) )  i^i  ( B  i^i  ( _V  \  C ) ) )  =  ( ( A  \  C
)  i^i  ( B  \  C ) )
61, 2, 53eqtr3i 2123 1  |-  ( ( A  i^i  B ) 
\  C )  =  ( ( A  \  C )  i^i  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1296   _Vcvv 2633    \ cdif 3010    i^i cin 3012
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-dif 3015  df-in 3019
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator