Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > invdif | Unicode version |
Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
invdif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . . 5 | |
2 | eldif 3130 | . . . . 5 | |
3 | 1, 2 | mpbiran 935 | . . . 4 |
4 | 3 | anbi2i 454 | . . 3 |
5 | elin 3310 | . . 3 | |
6 | eldif 3130 | . . 3 | |
7 | 4, 5, 6 | 3bitr4i 211 | . 2 |
8 | 7 | eqriv 2167 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wceq 1348 wcel 2141 cvv 2730 cdif 3118 cin 3120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-in 3127 |
This theorem is referenced by: indif2 3371 difundir 3380 difindir 3382 difdif2ss 3384 difun1 3387 difdifdirss 3499 nn0supp 9187 |
Copyright terms: Public domain | W3C validator |