ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invdif Unicode version

Theorem invdif 3415
Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
invdif  |-  ( A  i^i  ( _V  \  B ) )  =  ( A  \  B
)

Proof of Theorem invdif
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2775 . . . . 5  |-  x  e. 
_V
2 eldif 3175 . . . . 5  |-  ( x  e.  ( _V  \  B )  <->  ( x  e.  _V  /\  -.  x  e.  B ) )
31, 2mpbiran 943 . . . 4  |-  ( x  e.  ( _V  \  B )  <->  -.  x  e.  B )
43anbi2i 457 . . 3  |-  ( ( x  e.  A  /\  x  e.  ( _V  \  B ) )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
5 elin 3356 . . 3  |-  ( x  e.  ( A  i^i  ( _V  \  B ) )  <->  ( x  e.  A  /\  x  e.  ( _V  \  B
) ) )
6 eldif 3175 . . 3  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
74, 5, 63bitr4i 212 . 2  |-  ( x  e.  ( A  i^i  ( _V  \  B ) )  <->  x  e.  ( A  \  B ) )
87eqriv 2202 1  |-  ( A  i^i  ( _V  \  B ) )  =  ( A  \  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772    \ cdif 3163    i^i cin 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-in 3172
This theorem is referenced by:  indif2  3417  difundir  3426  difindir  3428  difdif2ss  3430  difun1  3433  difdifdirss  3545  nn0supp  9347
  Copyright terms: Public domain W3C validator