ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inindir Unicode version

Theorem inindir 3221
Description: Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
inindir  |-  ( ( A  i^i  B )  i^i  C )  =  ( ( A  i^i  C )  i^i  ( B  i^i  C ) )

Proof of Theorem inindir
StepHypRef Expression
1 inidm 3212 . . 3  |-  ( C  i^i  C )  =  C
21ineq2i 3201 . 2  |-  ( ( A  i^i  B )  i^i  ( C  i^i  C ) )  =  ( ( A  i^i  B
)  i^i  C )
3 in4 3219 . 2  |-  ( ( A  i^i  B )  i^i  ( C  i^i  C ) )  =  ( ( A  i^i  C
)  i^i  ( B  i^i  C ) )
42, 3eqtr3i 2111 1  |-  ( ( A  i^i  B )  i^i  C )  =  ( ( A  i^i  C )  i^i  ( B  i^i  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1290    i^i cin 3001
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2624  df-in 3008
This theorem is referenced by:  difindir  3257  resindir  4744
  Copyright terms: Public domain W3C validator