ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq12i Unicode version

Theorem ineq12i 3222
Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
ineq1i.1  |-  A  =  B
ineq12i.2  |-  C  =  D
Assertion
Ref Expression
ineq12i  |-  ( A  i^i  C )  =  ( B  i^i  D
)

Proof of Theorem ineq12i
StepHypRef Expression
1 ineq1i.1 . 2  |-  A  =  B
2 ineq12i.2 . 2  |-  C  =  D
3 ineq12 3219 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  i^i  C
)  =  ( B  i^i  D ) )
41, 2, 3mp2an 420 1  |-  ( A  i^i  C )  =  ( B  i^i  D
)
Colors of variables: wff set class
Syntax hints:    = wceq 1299    i^i cin 3020
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-in 3027
This theorem is referenced by:  undir  3273  difindir  3278  inrab  3295  inrab2  3296  inxp  4611  resindi  4770  resindir  4771  cnvin  4882  rnin  4884  inimass  4891  funtp  5112  imainlem  5140  imain  5141  offres  5964  djuinr  6863  djuin  6864  casefun  6885  exmidfodomrlemim  6966  enq0enq  7140  explecnv  11113
  Copyright terms: Public domain W3C validator