Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ineq12i | Unicode version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
ineq1i.1 | |
ineq12i.2 |
Ref | Expression |
---|---|
ineq12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 | |
2 | ineq12i.2 | . 2 | |
3 | ineq12 3303 | . 2 | |
4 | 1, 2, 3 | mp2an 423 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 cin 3101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 |
This theorem is referenced by: undir 3357 difindir 3362 inrab 3379 inrab2 3380 inxp 4717 resindi 4878 resindir 4879 cnvin 4990 rnin 4992 inimass 4999 funtp 5220 imainlem 5248 imain 5249 offres 6077 djuinr 6997 djuin 6998 casefun 7019 exmidfodomrlemim 7119 enq0enq 7334 explecnv 11384 |
Copyright terms: Public domain | W3C validator |