ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq12i Unicode version

Theorem ineq12i 3306
Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
ineq1i.1  |-  A  =  B
ineq12i.2  |-  C  =  D
Assertion
Ref Expression
ineq12i  |-  ( A  i^i  C )  =  ( B  i^i  D
)

Proof of Theorem ineq12i
StepHypRef Expression
1 ineq1i.1 . 2  |-  A  =  B
2 ineq12i.2 . 2  |-  C  =  D
3 ineq12 3303 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  i^i  C
)  =  ( B  i^i  D ) )
41, 2, 3mp2an 423 1  |-  ( A  i^i  C )  =  ( B  i^i  D
)
Colors of variables: wff set class
Syntax hints:    = wceq 1335    i^i cin 3101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-in 3108
This theorem is referenced by:  undir  3357  difindir  3362  inrab  3379  inrab2  3380  inxp  4717  resindi  4878  resindir  4879  cnvin  4990  rnin  4992  inimass  4999  funtp  5220  imainlem  5248  imain  5249  offres  6077  djuinr  6997  djuin  6998  casefun  7019  exmidfodomrlemim  7119  enq0enq  7334  explecnv  11384
  Copyright terms: Public domain W3C validator