| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq12i | Unicode version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| ineq1i.1 |
|
| ineq12i.2 |
|
| Ref | Expression |
|---|---|
| ineq12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 |
. 2
| |
| 2 | ineq12i.2 |
. 2
| |
| 3 | ineq12 3369 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 |
| This theorem is referenced by: undir 3423 difindir 3428 inrab 3445 inrab2 3446 inxp 4813 resindi 4975 resindir 4976 cnvin 5091 rnin 5093 inimass 5100 funtp 5328 imainlem 5356 imain 5357 offres 6222 djuinr 7167 djuin 7168 casefun 7189 exmidfodomrlemim 7311 enq0enq 7546 explecnv 11849 |
| Copyright terms: Public domain | W3C validator |