ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr3g Unicode version

Theorem 3imtr3g 203
Description: More general version of 3imtr3i 199. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.)
Hypotheses
Ref Expression
3imtr3g.1  |-  ( ph  ->  ( ps  ->  ch ) )
3imtr3g.2  |-  ( ps  <->  th )
3imtr3g.3  |-  ( ch  <->  ta )
Assertion
Ref Expression
3imtr3g  |-  ( ph  ->  ( th  ->  ta ) )

Proof of Theorem 3imtr3g
StepHypRef Expression
1 3imtr3g.2 . . 3  |-  ( ps  <->  th )
2 3imtr3g.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2syl5bir 152 . 2  |-  ( ph  ->  ( th  ->  ch ) )
4 3imtr3g.3 . 2  |-  ( ch  <->  ta )
53, 4syl6ib 160 1  |-  ( ph  ->  ( th  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  dvelimfALT2  1771  dvelimf  1966  dveeq1  1970  sspwb  4098  ssopab2b  4158  wetrep  4242  imadif  5161  ssoprab2b  5782  iinerm  6455  uzind  9066  bezoutlembi  11539
  Copyright terms: Public domain W3C validator