ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr3g Unicode version

Theorem 3imtr3g 204
Description: More general version of 3imtr3i 200. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.)
Hypotheses
Ref Expression
3imtr3g.1  |-  ( ph  ->  ( ps  ->  ch ) )
3imtr3g.2  |-  ( ps  <->  th )
3imtr3g.3  |-  ( ch  <->  ta )
Assertion
Ref Expression
3imtr3g  |-  ( ph  ->  ( th  ->  ta ) )

Proof of Theorem 3imtr3g
StepHypRef Expression
1 3imtr3g.2 . . 3  |-  ( ps  <->  th )
2 3imtr3g.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2biimtrrid 153 . 2  |-  ( ph  ->  ( th  ->  ch ) )
4 3imtr3g.3 . 2  |-  ( ch  <->  ta )
53, 4imbitrdi 161 1  |-  ( ph  ->  ( th  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  dvelimfALT2  1817  dvelimf  2015  dveeq1  2019  sspwb  4218  ssopab2b  4278  wetrep  4362  imadif  5298  ssoprab2b  5935  iinerm  6610  uzind  9367  bezoutlembi  12009  subrgdvds  13362
  Copyright terms: Public domain W3C validator