| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3imtr3g | Unicode version | ||
| Description: More general version of 3imtr3i 200. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) | 
| Ref | Expression | 
|---|---|
| 3imtr3g.1 | 
 | 
| 3imtr3g.2 | 
 | 
| 3imtr3g.3 | 
 | 
| Ref | Expression | 
|---|---|
| 3imtr3g | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3imtr3g.2 | 
. . 3
 | |
| 2 | 3imtr3g.1 | 
. . 3
 | |
| 3 | 1, 2 | biimtrrid 153 | 
. 2
 | 
| 4 | 3imtr3g.3 | 
. 2
 | |
| 5 | 3, 4 | imbitrdi 161 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: dvelimfALT2 1831 dvelimf 2034 dveeq1 2038 sspwb 4249 ssopab2b 4311 wetrep 4395 imadif 5338 ssoprab2b 5979 iinerm 6666 uzind 9437 bezoutlembi 12172 subrgdvds 13791 | 
| Copyright terms: Public domain | W3C validator |