| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dvelimf | GIF version | ||
| Description: Version of dvelim 2036 without any variable restrictions. (Contributed by NM, 1-Oct-2002.) | 
| Ref | Expression | 
|---|---|
| dvelimf.1 | ⊢ (𝜑 → ∀𝑥𝜑) | 
| dvelimf.2 | ⊢ (𝜓 → ∀𝑧𝜓) | 
| dvelimf.3 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| dvelimf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dvelimf.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | hbsb4 2031 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → ∀𝑥[𝑦 / 𝑧]𝜑)) | 
| 3 | dvelimf.2 | . . 3 ⊢ (𝜓 → ∀𝑧𝜓) | |
| 4 | dvelimf.3 | . . 3 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | sbieh 1804 | . 2 ⊢ ([𝑦 / 𝑧]𝜑 ↔ 𝜓) | 
| 6 | 5 | albii 1484 | . 2 ⊢ (∀𝑥[𝑦 / 𝑧]𝜑 ↔ ∀𝑥𝜓) | 
| 7 | 2, 5, 6 | 3imtr3g 204 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1362 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: dvelim 2036 dveel1 2176 dveel2 2177 | 
| Copyright terms: Public domain | W3C validator |