| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvelimf | GIF version | ||
| Description: Version of dvelim 2068 without any variable restrictions. (Contributed by NM, 1-Oct-2002.) |
| Ref | Expression |
|---|---|
| dvelimf.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| dvelimf.2 | ⊢ (𝜓 → ∀𝑧𝜓) |
| dvelimf.3 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| dvelimf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelimf.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | hbsb4 2063 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → ∀𝑥[𝑦 / 𝑧]𝜑)) |
| 3 | dvelimf.2 | . . 3 ⊢ (𝜓 → ∀𝑧𝜓) | |
| 4 | dvelimf.3 | . . 3 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | sbieh 1836 | . 2 ⊢ ([𝑦 / 𝑧]𝜑 ↔ 𝜓) |
| 6 | 5 | albii 1516 | . 2 ⊢ (∀𝑥[𝑦 / 𝑧]𝜑 ↔ ∀𝑥𝜓) |
| 7 | 2, 5, 6 | 3imtr3g 204 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1393 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: dvelim 2068 dveel1 2209 dveel2 2210 |
| Copyright terms: Public domain | W3C validator |