Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvelimf | GIF version |
Description: Version of dvelim 2010 without any variable restrictions. (Contributed by NM, 1-Oct-2002.) |
Ref | Expression |
---|---|
dvelimf.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
dvelimf.2 | ⊢ (𝜓 → ∀𝑧𝜓) |
dvelimf.3 | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
dvelimf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvelimf.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | hbsb4 2005 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → ∀𝑥[𝑦 / 𝑧]𝜑)) |
3 | dvelimf.2 | . . 3 ⊢ (𝜓 → ∀𝑧𝜓) | |
4 | dvelimf.3 | . . 3 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | sbieh 1783 | . 2 ⊢ ([𝑦 / 𝑧]𝜑 ↔ 𝜓) |
6 | 5 | albii 1463 | . 2 ⊢ (∀𝑥[𝑦 / 𝑧]𝜑 ↔ ∀𝑥𝜓) |
7 | 2, 5, 6 | 3imtr3g 203 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∀wal 1346 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: dvelim 2010 dveel1 2150 dveel2 2151 |
Copyright terms: Public domain | W3C validator |