ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimf GIF version

Theorem dvelimf 2008
Description: Version of dvelim 2010 without any variable restrictions. (Contributed by NM, 1-Oct-2002.)
Hypotheses
Ref Expression
dvelimf.1 (𝜑 → ∀𝑥𝜑)
dvelimf.2 (𝜓 → ∀𝑧𝜓)
dvelimf.3 (𝑧 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dvelimf (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))

Proof of Theorem dvelimf
StepHypRef Expression
1 dvelimf.1 . . 3 (𝜑 → ∀𝑥𝜑)
21hbsb4 2005 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → ∀𝑥[𝑦 / 𝑧]𝜑))
3 dvelimf.2 . . 3 (𝜓 → ∀𝑧𝜓)
4 dvelimf.3 . . 3 (𝑧 = 𝑦 → (𝜑𝜓))
53, 4sbieh 1783 . 2 ([𝑦 / 𝑧]𝜑𝜓)
65albii 1463 . 2 (∀𝑥[𝑦 / 𝑧]𝜑 ↔ ∀𝑥𝜓)
72, 5, 63imtr3g 203 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wal 1346  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by:  dvelim  2010  dveel1  2150  dveel2  2151
  Copyright terms: Public domain W3C validator