ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimf GIF version

Theorem dvelimf 2066
Description: Version of dvelim 2068 without any variable restrictions. (Contributed by NM, 1-Oct-2002.)
Hypotheses
Ref Expression
dvelimf.1 (𝜑 → ∀𝑥𝜑)
dvelimf.2 (𝜓 → ∀𝑧𝜓)
dvelimf.3 (𝑧 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dvelimf (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))

Proof of Theorem dvelimf
StepHypRef Expression
1 dvelimf.1 . . 3 (𝜑 → ∀𝑥𝜑)
21hbsb4 2063 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → ∀𝑥[𝑦 / 𝑧]𝜑))
3 dvelimf.2 . . 3 (𝜓 → ∀𝑧𝜓)
4 dvelimf.3 . . 3 (𝑧 = 𝑦 → (𝜑𝜓))
53, 4sbieh 1836 . 2 ([𝑦 / 𝑧]𝜑𝜓)
65albii 1516 . 2 (∀𝑥[𝑦 / 𝑧]𝜑 ↔ ∀𝑥𝜓)
72, 5, 63imtr3g 204 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wal 1393  [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809
This theorem is referenced by:  dvelim  2068  dveel1  2209  dveel2  2210
  Copyright terms: Public domain W3C validator