ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb4 Unicode version

Theorem hbsb4 2031
Description: A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
Hypothesis
Ref Expression
hbsb4.1  |-  ( ph  ->  A. z ph )
Assertion
Ref Expression
hbsb4  |-  ( -. 
A. z  z  =  y  ->  ( [
y  /  x ] ph  ->  A. z [ y  /  x ] ph ) )

Proof of Theorem hbsb4
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 hbsb4.1 . . 3  |-  ( ph  ->  A. z ph )
21hbsb 1968 . 2  |-  ( [ w  /  x ] ph  ->  A. z [ w  /  x ] ph )
3 sbequ 1854 . 2  |-  ( w  =  y  ->  ( [ w  /  x ] ph  <->  [ y  /  x ] ph ) )
42, 3dvelimALT 2029 1  |-  ( -. 
A. z  z  =  y  ->  ( [
y  /  x ] ph  ->  A. z [ y  /  x ] ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1362   [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by:  hbsb4t  2032  dvelimf  2034
  Copyright terms: Public domain W3C validator