ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb4 Unicode version

Theorem hbsb4 1988
Description: A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
Hypothesis
Ref Expression
hbsb4.1  |-  ( ph  ->  A. z ph )
Assertion
Ref Expression
hbsb4  |-  ( -. 
A. z  z  =  y  ->  ( [
y  /  x ] ph  ->  A. z [ y  /  x ] ph ) )

Proof of Theorem hbsb4
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 hbsb4.1 . . 3  |-  ( ph  ->  A. z ph )
21hbsb 1923 . 2  |-  ( [ w  /  x ] ph  ->  A. z [ w  /  x ] ph )
3 sbequ 1813 . 2  |-  ( w  =  y  ->  ( [ w  /  x ] ph  <->  [ y  /  x ] ph ) )
42, 3dvelimALT 1986 1  |-  ( -. 
A. z  z  =  y  ->  ( [
y  /  x ] ph  ->  A. z [ y  /  x ] ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1330   [wsb 1736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737
This theorem is referenced by:  hbsb4t  1989  dvelimf  1991
  Copyright terms: Public domain W3C validator