| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > hbsb4 | Unicode version | ||
| Description: A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.) | 
| Ref | Expression | 
|---|---|
| hbsb4.1 | 
 | 
| Ref | Expression | 
|---|---|
| hbsb4 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hbsb4.1 | 
. . 3
 | |
| 2 | 1 | hbsb 1968 | 
. 2
 | 
| 3 | sbequ 1854 | 
. 2
 | |
| 4 | 2, 3 | dvelimALT 2029 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: hbsb4t 2032 dvelimf 2034 | 
| Copyright terms: Public domain | W3C validator |