Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ectocl | Unicode version |
Description: Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ectocl.1 | |
ectocl.2 | |
ectocl.3 |
Ref | Expression |
---|---|
ectocl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1352 | . 2 | |
2 | ectocl.1 | . . 3 | |
3 | ectocl.2 | . . 3 | |
4 | ectocl.3 | . . . 4 | |
5 | 4 | adantl 275 | . . 3 |
6 | 2, 3, 5 | ectocld 6579 | . 2 |
7 | 1, 6 | mpan 422 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wtru 1349 wcel 2141 cec 6511 cqs 6512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-qs 6519 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |