ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ectocl Unicode version

Theorem ectocl 6568
Description: Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ectocl.1  |-  S  =  ( B /. R
)
ectocl.2  |-  ( [ x ] R  =  A  ->  ( ph  <->  ps ) )
ectocl.3  |-  ( x  e.  B  ->  ph )
Assertion
Ref Expression
ectocl  |-  ( A  e.  S  ->  ps )
Distinct variable groups:    x, A    x, B    x, R    ps, x
Allowed substitution hints:    ph( x)    S( x)

Proof of Theorem ectocl
StepHypRef Expression
1 tru 1347 . 2  |- T.
2 ectocl.1 . . 3  |-  S  =  ( B /. R
)
3 ectocl.2 . . 3  |-  ( [ x ] R  =  A  ->  ( ph  <->  ps ) )
4 ectocl.3 . . . 4  |-  ( x  e.  B  ->  ph )
54adantl 275 . . 3  |-  ( ( T.  /\  x  e.  B )  ->  ph )
62, 3, 5ectocld 6567 . 2  |-  ( ( T.  /\  A  e.  S )  ->  ps )
71, 6mpan 421 1  |-  ( A  e.  S  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   T. wtru 1344    e. wcel 2136   [cec 6499   /.cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-qs 6507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator