ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ectocl Unicode version

Theorem ectocl 6688
Description: Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ectocl.1  |-  S  =  ( B /. R
)
ectocl.2  |-  ( [ x ] R  =  A  ->  ( ph  <->  ps ) )
ectocl.3  |-  ( x  e.  B  ->  ph )
Assertion
Ref Expression
ectocl  |-  ( A  e.  S  ->  ps )
Distinct variable groups:    x, A    x, B    x, R    ps, x
Allowed substitution hints:    ph( x)    S( x)

Proof of Theorem ectocl
StepHypRef Expression
1 tru 1376 . 2  |- T.
2 ectocl.1 . . 3  |-  S  =  ( B /. R
)
3 ectocl.2 . . 3  |-  ( [ x ] R  =  A  ->  ( ph  <->  ps ) )
4 ectocl.3 . . . 4  |-  ( x  e.  B  ->  ph )
54adantl 277 . . 3  |-  ( ( T.  /\  x  e.  B )  ->  ph )
62, 3, 5ectocld 6687 . 2  |-  ( ( T.  /\  A  e.  S )  ->  ps )
71, 6mpan 424 1  |-  ( A  e.  S  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1372   T. wtru 1373    e. wcel 2175   [cec 6617   /.cqs 6618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-qs 6625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator