ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsn0m Unicode version

Theorem elqsn0m 6657
Description: An element of a quotient set is inhabited. (Contributed by Jim Kingdon, 21-Aug-2019.)
Assertion
Ref Expression
elqsn0m  |-  ( ( dom  R  =  A  /\  B  e.  ( A /. R ) )  ->  E. x  x  e.  B )
Distinct variable groups:    x, R    x, A    x, B

Proof of Theorem elqsn0m
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . 2  |-  ( A /. R )  =  ( A /. R
)
2 eleq2 2257 . . 3  |-  ( [ y ] R  =  B  ->  ( x  e.  [ y ] R  <->  x  e.  B ) )
32exbidv 1836 . 2  |-  ( [ y ] R  =  B  ->  ( E. x  x  e.  [ y ] R  <->  E. x  x  e.  B )
)
4 eleq2 2257 . . . 4  |-  ( dom 
R  =  A  -> 
( y  e.  dom  R  <-> 
y  e.  A ) )
54biimpar 297 . . 3  |-  ( ( dom  R  =  A  /\  y  e.  A
)  ->  y  e.  dom  R )
6 ecdmn0m 6631 . . 3  |-  ( y  e.  dom  R  <->  E. x  x  e.  [ y ] R )
75, 6sylib 122 . 2  |-  ( ( dom  R  =  A  /\  y  e.  A
)  ->  E. x  x  e.  [ y ] R )
81, 3, 7ectocld 6655 1  |-  ( ( dom  R  =  A  /\  B  e.  ( A /. R ) )  ->  E. x  x  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   dom cdm 4659   [cec 6585   /.cqs 6586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-ec 6589  df-qs 6593
This theorem is referenced by:  elqsn0  6658  ecelqsdm  6659
  Copyright terms: Public domain W3C validator