ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsn0m Unicode version

Theorem elqsn0m 6605
Description: An element of a quotient set is inhabited. (Contributed by Jim Kingdon, 21-Aug-2019.)
Assertion
Ref Expression
elqsn0m  |-  ( ( dom  R  =  A  /\  B  e.  ( A /. R ) )  ->  E. x  x  e.  B )
Distinct variable groups:    x, R    x, A    x, B

Proof of Theorem elqsn0m
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . 2  |-  ( A /. R )  =  ( A /. R
)
2 eleq2 2241 . . 3  |-  ( [ y ] R  =  B  ->  ( x  e.  [ y ] R  <->  x  e.  B ) )
32exbidv 1825 . 2  |-  ( [ y ] R  =  B  ->  ( E. x  x  e.  [ y ] R  <->  E. x  x  e.  B )
)
4 eleq2 2241 . . . 4  |-  ( dom 
R  =  A  -> 
( y  e.  dom  R  <-> 
y  e.  A ) )
54biimpar 297 . . 3  |-  ( ( dom  R  =  A  /\  y  e.  A
)  ->  y  e.  dom  R )
6 ecdmn0m 6579 . . 3  |-  ( y  e.  dom  R  <->  E. x  x  e.  [ y ] R )
75, 6sylib 122 . 2  |-  ( ( dom  R  =  A  /\  y  e.  A
)  ->  E. x  x  e.  [ y ] R )
81, 3, 7ectocld 6603 1  |-  ( ( dom  R  =  A  /\  B  e.  ( A /. R ) )  ->  E. x  x  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   dom cdm 4628   [cec 6535   /.cqs 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-ec 6539  df-qs 6543
This theorem is referenced by:  elqsn0  6606  ecelqsdm  6607
  Copyright terms: Public domain W3C validator