ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsn0m Unicode version

Theorem elqsn0m 6750
Description: An element of a quotient set is inhabited. (Contributed by Jim Kingdon, 21-Aug-2019.)
Assertion
Ref Expression
elqsn0m  |-  ( ( dom  R  =  A  /\  B  e.  ( A /. R ) )  ->  E. x  x  e.  B )
Distinct variable groups:    x, R    x, A    x, B

Proof of Theorem elqsn0m
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . 2  |-  ( A /. R )  =  ( A /. R
)
2 eleq2 2293 . . 3  |-  ( [ y ] R  =  B  ->  ( x  e.  [ y ] R  <->  x  e.  B ) )
32exbidv 1871 . 2  |-  ( [ y ] R  =  B  ->  ( E. x  x  e.  [ y ] R  <->  E. x  x  e.  B )
)
4 eleq2 2293 . . . 4  |-  ( dom 
R  =  A  -> 
( y  e.  dom  R  <-> 
y  e.  A ) )
54biimpar 297 . . 3  |-  ( ( dom  R  =  A  /\  y  e.  A
)  ->  y  e.  dom  R )
6 ecdmn0m 6724 . . 3  |-  ( y  e.  dom  R  <->  E. x  x  e.  [ y ] R )
75, 6sylib 122 . 2  |-  ( ( dom  R  =  A  /\  y  e.  A
)  ->  E. x  x  e.  [ y ] R )
81, 3, 7ectocld 6748 1  |-  ( ( dom  R  =  A  /\  B  e.  ( A /. R ) )  ->  E. x  x  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   dom cdm 4719   [cec 6678   /.cqs 6679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-ec 6682  df-qs 6686
This theorem is referenced by:  elqsn0  6751  ecelqsdm  6752
  Copyright terms: Public domain W3C validator