ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ectocl GIF version

Theorem ectocl 6568
Description: Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ectocl.1 𝑆 = (𝐵 / 𝑅)
ectocl.2 ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))
ectocl.3 (𝑥𝐵𝜑)
Assertion
Ref Expression
ectocl (𝐴𝑆𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)

Proof of Theorem ectocl
StepHypRef Expression
1 tru 1347 . 2
2 ectocl.1 . . 3 𝑆 = (𝐵 / 𝑅)
3 ectocl.2 . . 3 ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))
4 ectocl.3 . . . 4 (𝑥𝐵𝜑)
54adantl 275 . . 3 ((⊤ ∧ 𝑥𝐵) → 𝜑)
62, 3, 5ectocld 6567 . 2 ((⊤ ∧ 𝐴𝑆) → 𝜓)
71, 6mpan 421 1 (𝐴𝑆𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wtru 1344  wcel 2136  [cec 6499   / cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-qs 6507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator