Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ectocl | GIF version |
Description: Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ectocl.1 | ⊢ 𝑆 = (𝐵 / 𝑅) |
ectocl.2 | ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
ectocl.3 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
ectocl | ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1352 | . 2 ⊢ ⊤ | |
2 | ectocl.1 | . . 3 ⊢ 𝑆 = (𝐵 / 𝑅) | |
3 | ectocl.2 | . . 3 ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | ectocl.3 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
5 | 4 | adantl 275 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → 𝜑) |
6 | 2, 3, 5 | ectocld 6577 | . 2 ⊢ ((⊤ ∧ 𝐴 ∈ 𝑆) → 𝜓) |
7 | 1, 6 | mpan 422 | 1 ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ⊤wtru 1349 ∈ wcel 2141 [cec 6509 / cqs 6510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-qs 6517 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |