HomeHome Intuitionistic Logic Explorer
Theorem List (p. 67 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6601-6700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem2ecoptocl 6601* Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.)
 |-  S  =  ( ( C  X.  D )
 /. R )   &    |-  ( [ <. x ,  y >. ] R  =  A  ->  ( ph  <->  ps ) )   &    |-  ( [ <. z ,  w >. ] R  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 ( ( x  e.  C  /\  y  e.  D )  /\  (
 z  e.  C  /\  w  e.  D )
 )  ->  ph )   =>    |-  ( ( A  e.  S  /\  B  e.  S )  ->  ch )
 
Theorem3ecoptocl 6602* Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.)
 |-  S  =  ( ( D  X.  D )
 /. R )   &    |-  ( [ <. x ,  y >. ] R  =  A  ->  ( ph  <->  ps ) )   &    |-  ( [ <. z ,  w >. ] R  =  B  ->  ( ps  <->  ch ) )   &    |-  ( [ <. v ,  u >. ] R  =  C  ->  ( ch  <->  th ) )   &    |-  (
 ( ( x  e.  D  /\  y  e.  D )  /\  (
 z  e.  D  /\  w  e.  D )  /\  ( v  e.  D  /\  u  e.  D ) )  ->  ph )   =>    |-  (
 ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  ->  th )
 
Theorembrecop 6603* Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996.)
 |- 
 .~  e.  _V   &    |-  .~  Er  ( G  X.  G )   &    |-  H  =  ( ( G  X.  G ) /.  .~  )   &    |- 
 .<_  =  { <. x ,  y >.  |  ( ( x  e.  H  /\  y  e.  H )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ] 
 .~  /\  y  =  [ <. v ,  u >. ]  .~  )  /\  ph ) ) }   &    |-  (
 ( ( ( z  e.  G  /\  w  e.  G )  /\  ( A  e.  G  /\  B  e.  G )
 )  /\  ( (
 v  e.  G  /\  u  e.  G )  /\  ( C  e.  G  /\  D  e.  G ) ) )  ->  (
 ( [ <. z ,  w >. ]  .~  =  [ <. A ,  B >. ]  .~  /\  [ <. v ,  u >. ] 
 .~  =  [ <. C ,  D >. ]  .~  )  ->  ( ph  <->  ps ) ) )   =>    |-  ( ( ( A  e.  G  /\  B  e.  G )  /\  ( C  e.  G  /\  D  e.  G )
 )  ->  ( [ <. A ,  B >. ] 
 .~  .<_  [ <. C ,  D >. ]  .~  <->  ps ) )
 
Theoremeroveu 6604* Lemma for eroprf 6606. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  J  =  ( A
 /. R )   &    |-  K  =  ( B /. S )   &    |-  ( ph  ->  T  e.  Z )   &    |-  ( ph  ->  R  Er  U )   &    |-  ( ph  ->  S  Er  V )   &    |-  ( ph  ->  T  Er  W )   &    |-  ( ph  ->  A 
 C_  U )   &    |-  ( ph  ->  B  C_  V )   &    |-  ( ph  ->  C  C_  W )   &    |-  ( ph  ->  .+ 
 : ( A  X.  B ) --> C )   &    |-  ( ( ph  /\  (
 ( r  e.  A  /\  s  e.  A )  /\  ( t  e.  B  /\  u  e.  B ) ) ) 
 ->  ( ( r R s  /\  t S u )  ->  (
 r  .+  t ) T ( s  .+  u ) ) )   =>    |-  ( ( ph  /\  ( X  e.  J  /\  Y  e.  K )
 )  ->  E! z E. p  e.  A  E. q  e.  B  ( ( X  =  [ p ] R  /\  Y  =  [ q ] S )  /\  z  =  [ ( p  .+  q ) ] T ) )
 
Theoremerovlem 6605* Lemma for eroprf 6606. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  J  =  ( A
 /. R )   &    |-  K  =  ( B /. S )   &    |-  ( ph  ->  T  e.  Z )   &    |-  ( ph  ->  R  Er  U )   &    |-  ( ph  ->  S  Er  V )   &    |-  ( ph  ->  T  Er  W )   &    |-  ( ph  ->  A 
 C_  U )   &    |-  ( ph  ->  B  C_  V )   &    |-  ( ph  ->  C  C_  W )   &    |-  ( ph  ->  .+ 
 : ( A  X.  B ) --> C )   &    |-  ( ( ph  /\  (
 ( r  e.  A  /\  s  e.  A )  /\  ( t  e.  B  /\  u  e.  B ) ) ) 
 ->  ( ( r R s  /\  t S u )  ->  (
 r  .+  t ) T ( s  .+  u ) ) )   &    |-  .+^ 
 =  { <. <. x ,  y >. ,  z >.  | 
 E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
 q ] S ) 
 /\  z  =  [
 ( p  .+  q
 ) ] T ) }   =>    |-  ( ph  ->  .+^  =  ( x  e.  J ,  y  e.  K  |->  ( iota
 z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
 q ] S ) 
 /\  z  =  [
 ( p  .+  q
 ) ] T ) ) ) )
 
Theoremeroprf 6606* Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  J  =  ( A
 /. R )   &    |-  K  =  ( B /. S )   &    |-  ( ph  ->  T  e.  Z )   &    |-  ( ph  ->  R  Er  U )   &    |-  ( ph  ->  S  Er  V )   &    |-  ( ph  ->  T  Er  W )   &    |-  ( ph  ->  A 
 C_  U )   &    |-  ( ph  ->  B  C_  V )   &    |-  ( ph  ->  C  C_  W )   &    |-  ( ph  ->  .+ 
 : ( A  X.  B ) --> C )   &    |-  ( ( ph  /\  (
 ( r  e.  A  /\  s  e.  A )  /\  ( t  e.  B  /\  u  e.  B ) ) ) 
 ->  ( ( r R s  /\  t S u )  ->  (
 r  .+  t ) T ( s  .+  u ) ) )   &    |-  .+^ 
 =  { <. <. x ,  y >. ,  z >.  | 
 E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
 q ] S ) 
 /\  z  =  [
 ( p  .+  q
 ) ] T ) }   &    |-  ( ph  ->  R  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  L  =  ( C
 /. T )   =>    |-  ( ph  ->  .+^  : ( J  X.  K )
 --> L )
 
Theoremeroprf2 6607* Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.)
 |-  J  =  ( A
 /.  .~  )   &    |-  .+^  =  { <.
 <. x ,  y >. ,  z >.  |  E. p  e.  A  E. q  e.  A  ( ( x  =  [ p ]  .~  /\  y  =  [
 q ]  .~  )  /\  z  =  [
 ( p  .+  q
 ) ]  .~  ) }   &    |-  ( ph  ->  .~  e.  X )   &    |-  ( ph  ->  .~ 
 Er  U )   &    |-  ( ph  ->  A  C_  U )   &    |-  ( ph  ->  .+  :
 ( A  X.  A )
 --> A )   &    |-  ( ( ph  /\  ( ( r  e.  A  /\  s  e.  A )  /\  (
 t  e.  A  /\  u  e.  A )
 ) )  ->  (
 ( r  .~  s  /\  t  .~  u ) 
 ->  ( r  .+  t
 )  .~  ( s  .+  u ) ) )   =>    |-  ( ph  ->  .+^  : ( J  X.  J ) --> J )
 
Theoremecopoveq 6608* This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation 
.~ (specified by the hypothesis) in terms of its operation  F. (Contributed by NM, 16-Aug-1995.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   =>    |-  ( ( ( A  e.  S  /\  B  e.  S )  /\  ( C  e.  S  /\  D  e.  S )
 )  ->  ( <. A ,  B >.  .~  <. C ,  D >.  <->  ( A  .+  D )  =  ( B  .+  C ) ) )
 
Theoremecopovsym 6609* Assuming the operation  F is commutative, show that the relation  .~, specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   &    |-  ( x  .+  y )  =  (
 y  .+  x )   =>    |-  ( A  .~  B  ->  B  .~  A )
 
Theoremecopovtrn 6610* Assuming that operation  F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation  .~, specified by the first hypothesis, is transitive. (Contributed by NM, 11-Feb-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   &    |-  ( x  .+  y )  =  (
 y  .+  x )   &    |-  (
 ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( x  .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) )   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  (
 ( x  .+  y
 )  =  ( x 
 .+  z )  ->  y  =  z )
 )   =>    |-  ( ( A  .~  B  /\  B  .~  C )  ->  A  .~  C )
 
Theoremecopover 6611* Assuming that operation  F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation  .~, specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   &    |-  ( x  .+  y )  =  (
 y  .+  x )   &    |-  (
 ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( x  .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) )   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  (
 ( x  .+  y
 )  =  ( x 
 .+  z )  ->  y  =  z )
 )   =>    |- 
 .~  Er  ( S  X.  S )
 
Theoremecopovsymg 6612* Assuming the operation  F is commutative, show that the relation  .~, specified by the first hypothesis, is symmetric. (Contributed by Jim Kingdon, 1-Sep-2019.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  =  ( y  .+  x ) )   =>    |-  ( A  .~  B  ->  B  .~  A )
 
Theoremecopovtrng 6613* Assuming that operation  F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation  .~, specified by the first hypothesis, is transitive. (Contributed by Jim Kingdon, 1-Sep-2019.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  ->  (
 ( x  .+  y
 )  .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  ->  (
 ( x  .+  y
 )  =  ( x 
 .+  z )  ->  y  =  z )
 )   =>    |-  ( ( A  .~  B  /\  B  .~  C )  ->  A  .~  C )
 
Theoremecopoverg 6614* Assuming that operation  F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation  .~, specified by the first hypothesis, is an equivalence relation. (Contributed by Jim Kingdon, 1-Sep-2019.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  ->  (
 ( x  .+  y
 )  .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  ->  (
 ( x  .+  y
 )  =  ( x 
 .+  z )  ->  y  =  z )
 )   =>    |- 
 .~  Er  ( S  X.  S )
 
Theoremth3qlem1 6615* Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60. The third hypothesis is the compatibility assumption. (Contributed by NM, 3-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |- 
 .~  Er  S   &    |-  ( ( ( y  e.  S  /\  w  e.  S )  /\  ( z  e.  S  /\  v  e.  S ) )  ->  ( ( y  .~  w  /\  z  .~  v )  ->  ( y  .+  z ) 
 .~  ( w  .+  v ) ) )   =>    |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S
 /.  .~  ) )  ->  E* x E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [
 z ]  .~  )  /\  x  =  [
 ( y  .+  z
 ) ]  .~  )
 )
 
Theoremth3qlem2 6616* Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. The fourth hypothesis is the compatibility assumption. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |- 
 .~  e.  _V   &    |-  .~  Er  ( S  X.  S )   &    |-  (
 ( ( ( w  e.  S  /\  v  e.  S )  /\  ( u  e.  S  /\  t  e.  S )
 )  /\  ( (
 s  e.  S  /\  f  e.  S )  /\  ( g  e.  S  /\  h  e.  S ) ) )  ->  ( ( <. w ,  v >.  .~  <. u ,  t >.  /\  <. s ,  f >.  .~  <. g ,  h >. )  ->  ( <. w ,  v >.  .+ 
 <. s ,  f >. ) 
 .~  ( <. u ,  t >.  .+  <. g ,  h >. ) ) )   =>    |-  ( ( A  e.  ( ( S  X.  S ) /.  .~  )  /\  B  e.  (
 ( S  X.  S ) /.  .~  ) ) 
 ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  .~  /\  B  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
 ( <. w ,  v >.  .+  <. u ,  t >. ) ]  .~  )
 )
 
Theoremth3qcor 6617* Corollary of Theorem 3Q of [Enderton] p. 60. (Contributed by NM, 12-Nov-1995.) (Revised by David Abernethy, 4-Jun-2013.)
 |- 
 .~  e.  _V   &    |-  .~  Er  ( S  X.  S )   &    |-  (
 ( ( ( w  e.  S  /\  v  e.  S )  /\  ( u  e.  S  /\  t  e.  S )
 )  /\  ( (
 s  e.  S  /\  f  e.  S )  /\  ( g  e.  S  /\  h  e.  S ) ) )  ->  ( ( <. w ,  v >.  .~  <. u ,  t >.  /\  <. s ,  f >.  .~  <. g ,  h >. )  ->  ( <. w ,  v >.  .+ 
 <. s ,  f >. ) 
 .~  ( <. u ,  t >.  .+  <. g ,  h >. ) ) )   &    |-  G  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  (
 ( S  X.  S ) /.  .~  ) ) 
 /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ] 
 .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [ ( <. w ,  v >.  .+ 
 <. u ,  t >. ) ]  .~  ) ) }   =>    |- 
 Fun  G
 
Theoremth3q 6618* Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 19-Dec-2013.)
 |- 
 .~  e.  _V   &    |-  .~  Er  ( S  X.  S )   &    |-  (
 ( ( ( w  e.  S  /\  v  e.  S )  /\  ( u  e.  S  /\  t  e.  S )
 )  /\  ( (
 s  e.  S  /\  f  e.  S )  /\  ( g  e.  S  /\  h  e.  S ) ) )  ->  ( ( <. w ,  v >.  .~  <. u ,  t >.  /\  <. s ,  f >.  .~  <. g ,  h >. )  ->  ( <. w ,  v >.  .+ 
 <. s ,  f >. ) 
 .~  ( <. u ,  t >.  .+  <. g ,  h >. ) ) )   &    |-  G  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  (
 ( S  X.  S ) /.  .~  ) ) 
 /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ] 
 .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [ ( <. w ,  v >.  .+ 
 <. u ,  t >. ) ]  .~  ) ) }   =>    |-  ( ( ( A  e.  S  /\  B  e.  S )  /\  ( C  e.  S  /\  D  e.  S )
 )  ->  ( [ <. A ,  B >. ] 
 .~  G [ <. C ,  D >. ]  .~  )  =  [ ( <. A ,  B >.  .+ 
 <. C ,  D >. ) ]  .~  )
 
Theoremoviec 6619* Express an operation on equivalence classes of ordered pairs in terms of equivalence class of operations on ordered pairs. See iset.mm for additional comments describing the hypotheses. (Unnecessary distinct variable restrictions were removed by David Abernethy, 4-Jun-2013.) (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 4-Jun-2013.)
 |-  ( ( ( A  e.  S  /\  B  e.  S )  /\  ( C  e.  S  /\  D  e.  S )
 )  ->  H  e.  ( S  X.  S ) )   &    |-  ( ( ( a  e.  S  /\  b  e.  S )  /\  ( g  e.  S  /\  h  e.  S ) )  ->  K  e.  ( S  X.  S ) )   &    |-  ( ( ( c  e.  S  /\  d  e.  S )  /\  ( t  e.  S  /\  s  e.  S ) )  ->  L  e.  ( S  X.  S ) )   &    |-  .~  e.  _V   &    |-  .~  Er  ( S  X.  S )   &    |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ph ) ) }   &    |-  (
 ( ( z  =  a  /\  w  =  b )  /\  (
 v  =  c  /\  u  =  d )
 )  ->  ( ph  <->  ps ) )   &    |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t 
 /\  u  =  s ) )  ->  ( ph 
 <->  ch ) )   &    |-  .+  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. ) 
 /\  z  =  J ) ) }   &    |-  (
 ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h )
 )  ->  J  =  K )   &    |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t 
 /\  f  =  s ) )  ->  J  =  L )   &    |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  J  =  H )   &    |-  .+^  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  Q  /\  y  e.  Q )  /\  E. a E. b E. c E. d
 ( ( x  =  [ <. a ,  b >. ]  .~  /\  y  =  [ <. c ,  d >. ]  .~  )  /\  z  =  [ ( <. a ,  b >.  .+ 
 <. c ,  d >. ) ]  .~  ) ) }   &    |-  Q  =  ( ( S  X.  S ) /.  .~  )   &    |-  (
 ( ( ( a  e.  S  /\  b  e.  S )  /\  (
 c  e.  S  /\  d  e.  S )
 )  /\  ( (
 g  e.  S  /\  h  e.  S )  /\  ( t  e.  S  /\  s  e.  S ) ) )  ->  ( ( ps  /\  ch )  ->  K  .~  L ) )   =>    |-  ( ( ( A  e.  S  /\  B  e.  S )  /\  ( C  e.  S  /\  D  e.  S ) )  ->  ( [ <. A ,  B >. ] 
 .~  .+^  [ <. C ,  D >. ]  .~  )  =  [ H ]  .~  )
 
Theoremecovcom 6620* Lemma used to transfer a commutative law via an equivalence relation. Most uses will want ecovicom 6621 instead. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
 |-  C  =  ( ( S  X.  S )
 /.  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .+  [ <. z ,  w >. ]  .~  )  =  [ <. D ,  G >. ]  .~  )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( [ <. z ,  w >. ] 
 .~  .+  [ <. x ,  y >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )   &    |-  D  =  H   &    |-  G  =  J   =>    |-  (
 ( A  e.  C  /\  B  e.  C ) 
 ->  ( A  .+  B )  =  ( B  .+  A ) )
 
Theoremecovicom 6621* Lemma used to transfer a commutative law via an equivalence relation. (Contributed by Jim Kingdon, 15-Sep-2019.)
 |-  C  =  ( ( S  X.  S )
 /.  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .+  [ <. z ,  w >. ]  .~  )  =  [ <. D ,  G >. ]  .~  )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( [ <. z ,  w >. ] 
 .~  .+  [ <. x ,  y >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  D  =  H )   &    |-  ( ( ( x  e.  S  /\  y  e.  S )  /\  ( z  e.  S  /\  w  e.  S ) )  ->  G  =  J )   =>    |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( A  .+  B )  =  ( B  .+  A ) )
 
Theoremecovass 6622* Lemma used to transfer an associative law via an equivalence relation. In most cases ecoviass 6623 will be more useful. (Contributed by NM, 31-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
 |-  D  =  ( ( S  X.  S )
 /.  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .+  [ <. z ,  w >. ]  .~  )  =  [ <. G ,  H >. ]  .~  )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( [ <. z ,  w >. ] 
 .~  .+  [ <. v ,  u >. ]  .~  )  =  [ <. N ,  Q >. ]  .~  )   &    |-  (
 ( ( G  e.  S  /\  H  e.  S )  /\  ( v  e.  S  /\  u  e.  S ) )  ->  ( [ <. G ,  H >. ]  .~  .+  [ <. v ,  u >. ]  .~  )  =  [ <. J ,  K >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  ( N  e.  S  /\  Q  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .+  [ <. N ,  Q >. ]  .~  )  =  [ <. L ,  M >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( G  e.  S  /\  H  e.  S ) )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( N  e.  S  /\  Q  e.  S ) )   &    |-  J  =  L   &    |-  K  =  M   =>    |-  (
 ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  ->  ( ( A  .+  B )  .+  C )  =  ( A  .+  ( B  .+  C ) ) )
 
Theoremecoviass 6623* Lemma used to transfer an associative law via an equivalence relation. (Contributed by Jim Kingdon, 16-Sep-2019.)
 |-  D  =  ( ( S  X.  S )
 /.  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .+  [ <. z ,  w >. ]  .~  )  =  [ <. G ,  H >. ]  .~  )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( [ <. z ,  w >. ] 
 .~  .+  [ <. v ,  u >. ]  .~  )  =  [ <. N ,  Q >. ]  .~  )   &    |-  (
 ( ( G  e.  S  /\  H  e.  S )  /\  ( v  e.  S  /\  u  e.  S ) )  ->  ( [ <. G ,  H >. ]  .~  .+  [ <. v ,  u >. ]  .~  )  =  [ <. J ,  K >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  ( N  e.  S  /\  Q  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .+  [ <. N ,  Q >. ]  .~  )  =  [ <. L ,  M >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( G  e.  S  /\  H  e.  S ) )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( N  e.  S  /\  Q  e.  S ) )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )  /\  ( v  e.  S  /\  u  e.  S ) )  ->  J  =  L )   &    |-  ( ( ( x  e.  S  /\  y  e.  S )  /\  ( z  e.  S  /\  w  e.  S )  /\  ( v  e.  S  /\  u  e.  S ) )  ->  K  =  M )   =>    |-  (
 ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  ->  ( ( A  .+  B )  .+  C )  =  ( A  .+  ( B  .+  C ) ) )
 
Theoremecovdi 6624* Lemma used to transfer a distributive law via an equivalence relation. Most likely ecovidi 6625 will be more helpful. (Contributed by NM, 2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.)
 |-  D  =  ( ( S  X.  S )
 /.  .~  )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( [ <. z ,  w >. ] 
 .~  .+  [ <. v ,  u >. ]  .~  )  =  [ <. M ,  N >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  ( M  e.  S  /\  N  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .x.  [ <. M ,  N >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .x.  [ <. z ,  w >. ]  .~  )  =  [ <. W ,  X >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .x.  [ <. v ,  u >. ]  .~  )  =  [ <. Y ,  Z >. ]  .~  )   &    |-  (
 ( ( W  e.  S  /\  X  e.  S )  /\  ( Y  e.  S  /\  Z  e.  S ) )  ->  ( [ <. W ,  X >. ] 
 .~  .+  [ <. Y ,  Z >. ]  .~  )  =  [ <. K ,  L >. ]  .~  )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( M  e.  S  /\  N  e.  S ) )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( W  e.  S  /\  X  e.  S ) )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( Y  e.  S  /\  Z  e.  S ) )   &    |-  H  =  K   &    |-  J  =  L   =>    |-  (
 ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  ->  ( A  .x.  ( B  .+  C ) )  =  ( ( A 
 .x.  B )  .+  ( A  .x.  C ) ) )
 
Theoremecovidi 6625* Lemma used to transfer a distributive law via an equivalence relation. (Contributed by Jim Kingdon, 17-Sep-2019.)
 |-  D  =  ( ( S  X.  S )
 /.  .~  )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( [ <. z ,  w >. ] 
 .~  .+  [ <. v ,  u >. ]  .~  )  =  [ <. M ,  N >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  ( M  e.  S  /\  N  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .x.  [ <. M ,  N >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .x.  [ <. z ,  w >. ]  .~  )  =  [ <. W ,  X >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .x.  [ <. v ,  u >. ]  .~  )  =  [ <. Y ,  Z >. ]  .~  )   &    |-  (
 ( ( W  e.  S  /\  X  e.  S )  /\  ( Y  e.  S  /\  Z  e.  S ) )  ->  ( [ <. W ,  X >. ] 
 .~  .+  [ <. Y ,  Z >. ]  .~  )  =  [ <. K ,  L >. ]  .~  )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( M  e.  S  /\  N  e.  S ) )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( W  e.  S  /\  X  e.  S ) )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( Y  e.  S  /\  Z  e.  S ) )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )  /\  ( v  e.  S  /\  u  e.  S ) )  ->  H  =  K )   &    |-  ( ( ( x  e.  S  /\  y  e.  S )  /\  ( z  e.  S  /\  w  e.  S )  /\  ( v  e.  S  /\  u  e.  S ) )  ->  J  =  L )   =>    |-  (
 ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  ->  ( A  .x.  ( B  .+  C ) )  =  ( ( A 
 .x.  B )  .+  ( A  .x.  C ) ) )
 
2.6.26  The mapping operation
 
Syntaxcmap 6626 Extend the definition of a class to include the mapping operation. (Read for  A  ^m  B, "the set of all functions that map from  B to  A.)
 class  ^m
 
Syntaxcpm 6627 Extend the definition of a class to include the partial mapping operation. (Read for  A  ^pm  B, "the set of all partial functions that map from  B to  A.)
 class  ^pm
 
Definitiondf-map 6628* Define the mapping operation or set exponentiation. The set of all functions that map from  B to  A is written  ( A  ^m  B ) (see mapval 6638). Many authors write  A followed by  B as a superscript for this operation and rely on context to avoid confusion other exponentiation operations (e.g., Definition 10.42 of [TakeutiZaring] p. 95). Other authors show 
B as a prefixed superscript, which is read " A pre  B " (e.g., definition of [Enderton] p. 52). Definition 8.21 of [Eisenberg] p. 125 uses the notation Map( B,  A) for our  ( A  ^m  B ). The up-arrow is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976). We adopt the first case of his notation (simple exponentiation) and subscript it with m to distinguish it from other kinds of exponentiation. (Contributed by NM, 8-Dec-2003.)
 |- 
 ^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x }
 )
 
Definitiondf-pm 6629* Define the partial mapping operation. A partial function from  B to  A is a function from a subset of  B to  A. The set of all partial functions from  B to  A is written  ( A  ^pm  B ) (see pmvalg 6637). A notation for this operation apparently does not appear in the literature. We use 
^pm to distinguish it from the less general set exponentiation operation  ^m (df-map 6628) . See mapsspm 6660 for its relationship to set exponentiation. (Contributed by NM, 15-Nov-2007.)
 |- 
 ^pm  =  ( x  e.  _V ,  y  e. 
 _V  |->  { f  e.  ~P ( y  X.  x )  |  Fun  f }
 )
 
Theoremmapprc 6630* When  A is a proper class, the class of all functions mapping  A to  B is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.)
 |-  ( -.  A  e.  _V 
 ->  { f  |  f : A --> B }  =  (/) )
 
Theorempmex 6631* The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  ( Fun  f  /\  f  C_  ( A  X.  B ) ) }  e.  _V )
 
Theoremmapex 6632* The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  |  f : A --> B }  e.  _V )
 
Theoremfnmap 6633 Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |- 
 ^m  Fn  ( _V  X. 
 _V )
 
Theoremfnpm 6634 Partial function exponentiation has a universal domain. (Contributed by Mario Carneiro, 14-Nov-2013.)
 |- 
 ^pm  Fn  ( _V  X. 
 _V )
 
Theoremreldmmap 6635 Set exponentiation is a well-behaved binary operator. (Contributed by Stefan O'Rear, 27-Feb-2015.)
 |- 
 Rel  dom  ^m
 
Theoremmapvalg 6636* The value of set exponentiation.  ( A  ^m  B
) is the set of all functions that map from  B to  A. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  ^m  B )  =  {
 f  |  f : B --> A } )
 
Theorempmvalg 6637* The value of the partial mapping operation.  ( A  ^pm  B ) is the set of all partial functions that map from  B to  A. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  ^pm  B )  =  { f  e.  ~P ( B  X.  A )  |  Fun  f } )
 
Theoremmapval 6638* The value of set exponentiation (inference version).  ( A  ^m  B ) is the set of all functions that map from  B to  A. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  ^m  B )  =  { f  |  f : B --> A }
 
Theoremelmapg 6639 Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^m  B )  <->  C : B --> A ) )
 
Theoremelmapd 6640 Deduction form of elmapg 6639. (Contributed by BJ, 11-Apr-2020.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   =>    |-  ( ph  ->  ( C  e.  ( A 
 ^m  B )  <->  C : B --> A ) )
 
Theoremmapdm0 6641 The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.)
 |-  ( B  e.  V  ->  ( B  ^m  (/) )  =  { (/) } )
 
Theoremelpmg 6642 The predicate "is a partial function". (Contributed by Mario Carneiro, 14-Nov-2013.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^pm  B )  <-> 
 ( Fun  C  /\  C  C_  ( B  X.  A ) ) ) )
 
Theoremelpm2g 6643 The predicate "is a partial function". (Contributed by NM, 31-Dec-2013.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( F  e.  ( A  ^pm  B )  <-> 
 ( F : dom  F --> A  /\  dom  F  C_  B ) ) )
 
Theoremelpm2r 6644 Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.)
 |-  ( ( ( A  e.  V  /\  B  e.  W )  /\  ( F : C --> A  /\  C  C_  B ) ) 
 ->  F  e.  ( A 
 ^pm  B ) )
 
Theoremelpmi 6645 A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015.)
 |-  ( F  e.  ( A  ^pm  B )  ->  ( F : dom  F --> A  /\  dom  F  C_  B ) )
 
Theorempmfun 6646 A partial function is a function. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( F  e.  ( A  ^pm  B )  ->  Fun  F )
 
Theoremelmapex 6647 Eliminate antecedent for mapping theorems: domain can be taken to be a set. (Contributed by Stefan O'Rear, 8-Oct-2014.)
 |-  ( A  e.  ( B  ^m  C )  ->  ( B  e.  _V  /\  C  e.  _V )
 )
 
Theoremelmapi 6648 A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
 |-  ( A  e.  ( B  ^m  C )  ->  A : C --> B )
 
Theoremelmapfn 6649 A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.)
 |-  ( A  e.  ( B  ^m  C )  ->  A  Fn  C )
 
Theoremelmapfun 6650 A mapping is always a function. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
 |-  ( A  e.  ( B  ^m  C )  ->  Fun  A )
 
Theoremelmapssres 6651 A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
 |-  ( ( A  e.  ( B  ^m  C ) 
 /\  D  C_  C )  ->  ( A  |`  D )  e.  ( B  ^m  D ) )
 
Theoremfpmg 6652 A total function is a partial function. (Contributed by Mario Carneiro, 31-Dec-2013.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A --> B ) 
 ->  F  e.  ( B 
 ^pm  A ) )
 
Theorempmss12g 6653 Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
 |-  ( ( ( A 
 C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W )
 )  ->  ( A  ^pm 
 B )  C_  ( C  ^pm  D ) )
 
Theorempmresg 6654 Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
 |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) ) 
 ->  ( F  |`  B )  e.  ( A  ^pm  B ) )
 
Theoremelmap 6655 Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( F  e.  ( A  ^m  B )  <->  F : B --> A )
 
Theoremmapval2 6656* Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  ^m  B )  =  ( ~P ( B  X.  A )  i^i  { f  |  f  Fn  B }
 )
 
Theoremelpm 6657 The predicate "is a partial function". (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( F  e.  ( A  ^pm  B )  <->  ( Fun  F  /\  F  C_  ( B  X.  A ) ) )
 
Theoremelpm2 6658 The predicate "is a partial function". (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( F  e.  ( A  ^pm  B )  <->  ( F : dom  F --> A  /\  dom  F 
 C_  B ) )
 
Theoremfpm 6659 A total function is a partial function. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( F : A --> B  ->  F  e.  ( B  ^pm  A ) )
 
Theoremmapsspm 6660 Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
 |-  ( A  ^m  B )  C_  ( A  ^pm  B )
 
Theorempmsspw 6661 Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( A  ^pm  B )  C_  ~P ( B  X.  A )
 
Theoremmapsspw 6662 Set exponentiation is a subset of the power set of the Cartesian product of its arguments. (Contributed by NM, 8-Dec-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  ^m  B )  C_  ~P ( B  X.  A )
 
Theoremfvmptmap 6663* Special case of fvmpt 5573 for operator theorems. (Contributed by NM, 27-Nov-2007.)
 |-  C  e.  _V   &    |-  D  e.  _V   &    |-  R  e.  _V   &    |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  ( R  ^m  D )  |->  B )   =>    |-  ( A : D --> R  ->  ( F `  A )  =  C )
 
Theoremmap0e 6664 Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  ( A  e.  V  ->  ( A  ^m  (/) )  =  1o )
 
Theoremmap0b 6665 Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  =/=  (/)  ->  ( (/)  ^m  A )  =  (/) )
 
Theoremmap0g 6666 Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A 
 ^m  B )  =  (/) 
 <->  ( A  =  (/)  /\  B  =/=  (/) ) ) )
 
Theoremmap0 6667 Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( ( A  ^m  B )  =  (/)  <->  ( A  =  (/)  /\  B  =/=  (/) ) )
 
Theoremmapsn 6668* The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  ^m  { B } )  =  {
 f  |  E. y  e.  A  f  =  { <. B ,  y >. } }
 
Theoremmapss 6669 Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( B  e.  V  /\  A  C_  B )  ->  ( A  ^m  C )  C_  ( B 
 ^m  C ) )
 
Theoremfdiagfn 6670* Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  F  =  ( x  e.  B  |->  ( I  X.  { x }
 ) )   =>    |-  ( ( B  e.  V  /\  I  e.  W )  ->  F : B --> ( B  ^m  I ) )
 
Theoremfvdiagfn 6671* Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  F  =  ( x  e.  B  |->  ( I  X.  { x }
 ) )   =>    |-  ( ( I  e.  W  /\  X  e.  B )  ->  ( F `
  X )  =  ( I  X.  { X } ) )
 
Theoremmapsnconst 6672 Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.)
 |-  S  =  { X }   &    |-  B  e.  _V   &    |-  X  e.  _V   =>    |-  ( F  e.  ( B  ^m  S )  ->  F  =  ( S  X.  { ( F `  X ) } )
 )
 
Theoremmapsncnv 6673* Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
 |-  S  =  { X }   &    |-  B  e.  _V   &    |-  X  e.  _V   &    |-  F  =  ( x  e.  ( B 
 ^m  S )  |->  ( x `  X ) )   =>    |-  `' F  =  (
 y  e.  B  |->  ( S  X.  { y } ) )
 
Theoremmapsnf1o2 6674* Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
 |-  S  =  { X }   &    |-  B  e.  _V   &    |-  X  e.  _V   &    |-  F  =  ( x  e.  ( B 
 ^m  S )  |->  ( x `  X ) )   =>    |-  F : ( B 
 ^m  S ) -1-1-onto-> B
 
Theoremmapsnf1o3 6675* Explicit bijection in the reverse of mapsnf1o2 6674. (Contributed by Stefan O'Rear, 24-Mar-2015.)
 |-  S  =  { X }   &    |-  B  e.  _V   &    |-  X  e.  _V   &    |-  F  =  ( y  e.  B  |->  ( S  X.  { y } ) )   =>    |-  F : B -1-1-onto-> ( B  ^m  S )
 
2.6.27  Infinite Cartesian products
 
Syntaxcixp 6676 Extend class notation to include infinite Cartesian products.
 class  X_ x  e.  A  B
 
Definitiondf-ixp 6677* Definition of infinite Cartesian product of [Enderton] p. 54. Enderton uses a bold "X" with  x  e.  A written underneath or as a subscript, as does Stoll p. 47. Some books use a capital pi, but we will reserve that notation for products of numbers. Usually  B represents a class expression containing  x free and thus can be thought of as  B ( x ). Normally,  x is not free in  A, although this is not a requirement of the definition. (Contributed by NM, 28-Sep-2006.)
 |-  X_ x  e.  A  B  =  { f  |  ( f  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B ) }
 
Theoremdfixp 6678* Eliminate the expression  { x  |  x  e.  A } in df-ixp 6677, under the assumption that  A and  x are disjoint. This way, we can say that  x is bound in  X_ x  e.  A B even if it appears free in  A. (Contributed by Mario Carneiro, 12-Aug-2016.)
 |-  X_ x  e.  A  B  =  { f  |  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B ) }
 
Theoremixpsnval 6679* The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.)
 |-  ( X  e.  V  -> 
 X_ x  e.  { X } B  =  {
 f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  [_ X  /  x ]_ B ) }
 )
 
Theoremelixp2 6680* Membership in an infinite Cartesian product. See df-ixp 6677 for discussion of the notation. (Contributed by NM, 28-Sep-2006.)
 |-  ( F  e.  X_ x  e.  A  B  <->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremfvixp 6681* Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
 |-  ( x  =  C  ->  B  =  D )   =>    |-  ( ( F  e.  X_ x  e.  A  B  /\  C  e.  A ) 
 ->  ( F `  C )  e.  D )
 
Theoremixpfn 6682* A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.)
 |-  ( F  e.  X_ x  e.  A  B  ->  F  Fn  A )
 
Theoremelixp 6683* Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.)
 |-  F  e.  _V   =>    |-  ( F  e.  X_ x  e.  A  B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremelixpconst 6684* Membership in an infinite Cartesian product of a constant  B. (Contributed by NM, 12-Apr-2008.)
 |-  F  e.  _V   =>    |-  ( F  e.  X_ x  e.  A  B  <->  F : A --> B )
 
Theoremixpconstg 6685* Infinite Cartesian product of a constant  B. (Contributed by Mario Carneiro, 11-Jan-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  X_ x  e.  A  B  =  ( B  ^m  A ) )
 
Theoremixpconst 6686* Infinite Cartesian product of a constant  B. (Contributed by NM, 28-Sep-2006.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  X_ x  e.  A  B  =  ( B  ^m  A )
 
Theoremixpeq1 6687* Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
 |-  ( A  =  B  -> 
 X_ x  e.  A  C  =  X_ x  e.  B  C )
 
Theoremixpeq1d 6688* Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  X_ x  e.  A  C  =  X_ x  e.  B  C )
 
Theoremss2ixp 6689 Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.)
 |-  ( A. x  e.  A  B  C_  C  -> 
 X_ x  e.  A  B  C_  X_ x  e.  A  C )
 
Theoremixpeq2 6690 Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
 |-  ( A. x  e.  A  B  =  C  -> 
 X_ x  e.  A  B  =  X_ x  e.  A  C )
 
Theoremixpeq2dva 6691* Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  X_ x  e.  A  B  =  X_ x  e.  A  C )
 
Theoremixpeq2dv 6692* Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  X_ x  e.  A  B  =  X_ x  e.  A  C )
 
Theoremcbvixp 6693* Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.)
 |-  F/_ y B   &    |-  F/_ x C   &    |-  ( x  =  y  ->  B  =  C )   =>    |-  X_ x  e.  A  B  =  X_ y  e.  A  C
 
Theoremcbvixpv 6694* Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( x  =  y 
 ->  B  =  C )   =>    |-  X_ x  e.  A  B  =  X_ y  e.  A  C
 
Theoremnfixpxy 6695* Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon, 15-Feb-2023.)
 |-  F/_ y A   &    |-  F/_ y B   =>    |-  F/_ y X_ x  e.  A  B
 
Theoremnfixp1 6696 The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x X_ x  e.  A  B
 
Theoremixpprc 6697* A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain  A, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.)
 |-  ( -.  A  e.  _V 
 ->  X_ x  e.  A  B  =  (/) )
 
Theoremixpf 6698* A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
 |-  ( F  e.  X_ x  e.  A  B  ->  F : A --> U_ x  e.  A  B )
 
Theoremuniixp 6699* The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 24-Jun-2015.)
 |- 
 U. X_ x  e.  A  B  C_  ( A  X.  U_ x  e.  A  B )
 
Theoremixpexgg 6700* The existence of an infinite Cartesian product.  x is normally a free-variable parameter in 
B. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Jim Kingdon, 15-Feb-2023.)
 |-  ( ( A  e.  W  /\  A. x  e.  A  B  e.  V )  ->  X_ x  e.  A  B  e.  _V )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >