HomeHome Intuitionistic Logic Explorer
Theorem List (p. 67 of 156)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6601-6700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremersymb 6601 An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   =>    |-  ( ph  ->  ( A R B  <->  B R A ) )
 
Theoremertr 6602 An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   =>    |-  ( ph  ->  (
 ( A R B  /\  B R C ) 
 ->  A R C ) )
 
Theoremertrd 6603 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theoremertr2d 6604 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  C R A )
 
Theoremertr3d 6605 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  B R A )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theoremertr4d 6606 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   &    |-  ( ph  ->  C R B )   =>    |-  ( ph  ->  A R C )
 
Theoremerref 6607 An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A  e.  X )   =>    |-  ( ph  ->  A R A )
 
Theoremercnv 6608 The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  `' R  =  R )
 
Theoremerrn 6609 The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  ran  R  =  A )
 
Theoremerssxp 6610 An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  R  C_  ( A  X.  A ) )
 
Theoremerex 6611 An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  ( A  e.  V  ->  R  e.  _V )
 )
 
Theoremerexb 6612 An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  ( R  e.  _V  <->  A  e.  _V ) )
 
Theoremiserd 6613* A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  Rel  R )   &    |-  ( ( ph  /\  x R y )  ->  y R x )   &    |-  (
 ( ph  /\  ( x R y  /\  y R z ) ) 
 ->  x R z )   &    |-  ( ph  ->  ( x  e.  A  <->  x R x ) )   =>    |-  ( ph  ->  R  Er  A )
 
Theorembrdifun 6614 Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   =>    |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A R B 
 <->  -.  ( A  .<  B  \/  B  .<  A ) ) )
 
Theoremswoer 6615* Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   &    |-  ( ( ph  /\  ( y  e.  X  /\  z  e.  X ) )  ->  ( y 
 .<  z  ->  -.  z  .<  y ) )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  ( x  .<  y  ->  ( x  .<  z  \/  z  .<  y )
 ) )   =>    |-  ( ph  ->  R  Er  X )
 
Theoremswoord1 6616* The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   &    |-  ( ( ph  /\  ( y  e.  X  /\  z  e.  X ) )  ->  ( y 
 .<  z  ->  -.  z  .<  y ) )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  ( x  .<  y  ->  ( x  .<  z  \/  z  .<  y )
 ) )   &    |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  ( A  .<  C  <->  B  .<  C ) )
 
Theoremswoord2 6617* The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   &    |-  ( ( ph  /\  ( y  e.  X  /\  z  e.  X ) )  ->  ( y 
 .<  z  ->  -.  z  .<  y ) )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  ( x  .<  y  ->  ( x  .<  z  \/  z  .<  y )
 ) )   &    |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  ( C  .<  A  <->  C  .<  B ) )
 
Theoremeqerlem 6618* Lemma for eqer 6619. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
 |-  ( x  =  y 
 ->  A  =  B )   &    |-  R  =  { <. x ,  y >.  |  A  =  B }   =>    |-  ( z R w  <->  [_ z  /  x ]_ A  =  [_ w  /  x ]_ A )
 
Theoremeqer 6619* Equivalence relation involving equality of dependent classes  A
( x ) and  B ( y ). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( x  =  y 
 ->  A  =  B )   &    |-  R  =  { <. x ,  y >.  |  A  =  B }   =>    |-  R  Er  _V
 
Theoremider 6620 The identity relation is an equivalence relation. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
 |- 
 _I  Er  _V
 
Theorem0er 6621 The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.)
 |-  (/)  Er  (/)
 
Theoremeceq1 6622 Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
 |-  ( A  =  B  ->  [ A ] C  =  [ B ] C )
 
Theoremeceq1d 6623 Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  [ A ] C  =  [ B ] C )
 
Theoremeceq2 6624 Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
 |-  ( A  =  B  ->  [ C ] A  =  [ C ] B )
 
Theoremeceq2i 6625 Equality theorem for the  A-coset and  B-coset of  C, inference version. (Contributed by Peter Mazsa, 11-May-2021.)
 |-  A  =  B   =>    |-  [ C ] A  =  [ C ] B
 
Theoremeceq2d 6626 Equality theorem for the  A-coset and  B-coset of  C, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  [ C ] A  =  [ C ] B )
 
Theoremelecg 6627 Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  [ B ] R  <->  B R A ) )
 
Theoremelec 6628 Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  e.  [ B ] R  <->  B R A )
 
Theoremrelelec 6629 Membership in an equivalence class when  R is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( Rel  R  ->  ( A  e.  [ B ] R  <->  B R A ) )
 
Theoremecss 6630 An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   =>    |-  ( ph  ->  [ A ] R  C_  X )
 
Theoremecdmn0m 6631* A representative of an inhabited equivalence class belongs to the domain of the equivalence relation. (Contributed by Jim Kingdon, 21-Aug-2019.)
 |-  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R )
 
Theoremereldm 6632 Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  [ A ] R  =  [ B ] R )   =>    |-  ( ph  ->  ( A  e.  X  <->  B  e.  X ) )
 
Theoremerth 6633 Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A  e.  X )   =>    |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R ) )
 
Theoremerth2 6634 Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  B  e.  X )   =>    |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R ) )
 
Theoremerthi 6635 Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  [ A ] R  =  [ B ] R )
 
Theoremecidsn 6636 An equivalence class modulo the identity relation is a singleton. (Contributed by NM, 24-Oct-2004.)
 |- 
 [ A ]  _I  =  { A }
 
Theoremqseq1 6637 Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
 |-  ( A  =  B  ->  ( A /. C )  =  ( B /. C ) )
 
Theoremqseq2 6638 Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
 |-  ( A  =  B  ->  ( C /. A )  =  ( C /. B ) )
 
Theoremelqsg 6639* Closed form of elqs 6640. (Contributed by Rodolfo Medina, 12-Oct-2010.)
 |-  ( B  e.  V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R ) )
 
Theoremelqs 6640* Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
 |-  B  e.  _V   =>    |-  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R )
 
Theoremelqsi 6641* Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
 |-  ( B  e.  ( A /. R )  ->  E. x  e.  A  B  =  [ x ] R )
 
Theoremecelqsg 6642 Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( ( R  e.  V  /\  B  e.  A )  ->  [ B ] R  e.  ( A /. R ) )
 
Theoremecelqsi 6643 Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  R  e.  _V   =>    |-  ( B  e.  A  ->  [ B ] R  e.  ( A /. R ) )
 
Theoremecopqsi 6644 "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.)
 |-  R  e.  _V   &    |-  S  =  ( ( A  X.  A ) /. R )   =>    |-  ( ( B  e.  A  /\  C  e.  A )  ->  [ <. B ,  C >. ] R  e.  S )
 
Theoremqsexg 6645 A quotient set exists. (Contributed by FL, 19-May-2007.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  V  ->  ( A /. R )  e.  _V )
 
Theoremqsex 6646 A quotient set exists. (Contributed by NM, 14-Aug-1995.)
 |-  A  e.  _V   =>    |-  ( A /. R )  e.  _V
 
Theoremuniqs 6647 The union of a quotient set. (Contributed by NM, 9-Dec-2008.)
 |-  ( R  e.  V  ->  U. ( A /. R )  =  ( R " A ) )
 
Theoremqsss 6648 A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  A )   =>    |-  ( ph  ->  ( A /. R )  C_  ~P A )
 
Theoremuniqs2 6649 The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
 |-  ( ph  ->  R  Er  A )   &    |-  ( ph  ->  R  e.  V )   =>    |-  ( ph  ->  U. ( A /. R )  =  A )
 
Theoremsnec 6650 The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  A  e.  _V   =>    |-  { [ A ] R }  =  ( { A } /. R )
 
Theoremecqs 6651 Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.)
 |-  R  e.  _V   =>    |-  [ A ] R  =  U. ( { A } /. R )
 
Theoremecid 6652 A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  A  e.  _V   =>    |-  [ A ] `'  _E  =  A
 
Theoremecidg 6653 A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by Jim Kingdon, 8-Jan-2020.)
 |-  ( A  e.  V  ->  [ A ] `'  _E  =  A )
 
Theoremqsid 6654 A set is equal to its quotient set mod converse epsilon. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( A /. `'  _E  )  =  A
 
Theoremectocld 6655* Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  S  =  ( B
 /. R )   &    |-  ( [ x ] R  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 ( ch  /\  x  e.  B )  ->  ph )   =>    |-  (
 ( ch  /\  A  e.  S )  ->  ps )
 
Theoremectocl 6656* Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  S  =  ( B
 /. R )   &    |-  ( [ x ] R  =  A  ->  ( ph  <->  ps ) )   &    |-  ( x  e.  B  ->  ph )   =>    |-  ( A  e.  S  ->  ps )
 
Theoremelqsn0m 6657* An element of a quotient set is inhabited. (Contributed by Jim Kingdon, 21-Aug-2019.)
 |-  ( ( dom  R  =  A  /\  B  e.  ( A /. R ) )  ->  E. x  x  e.  B )
 
Theoremelqsn0 6658 A quotient set doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.)
 |-  ( ( dom  R  =  A  /\  B  e.  ( A /. R ) )  ->  B  =/=  (/) )
 
Theoremecelqsdm 6659 Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995.)
 |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) ) 
 ->  B  e.  A )
 
Theoremxpider 6660 A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( A  X.  A )  Er  A
 
Theoremiinerm 6661* The intersection of a nonempty family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
 |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  R  Er  B )  ->  |^|_ x  e.  A  R  Er  B )
 
Theoremriinerm 6662* The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
 |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  R  Er  B )  ->  (
 ( B  X.  B )  i^i  |^|_ x  e.  A  R )  Er  B )
 
Theoremerinxp 6663 A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  A )   &    |-  ( ph  ->  B 
 C_  A )   =>    |-  ( ph  ->  ( R  i^i  ( B  X.  B ) )  Er  B )
 
Theoremecinxp 6664 Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.)
 |-  ( ( ( R
 " A )  C_  A  /\  B  e.  A )  ->  [ B ] R  =  [ B ] ( R  i^i  ( A  X.  A ) ) )
 
Theoremqsinxp 6665 Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
 |-  ( ( R " A )  C_  A  ->  ( A /. R )  =  ( A /. ( R  i^i  ( A  X.  A ) ) ) )
 
Theoremqsel 6666 If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( ( R  Er  X  /\  B  e.  ( A /. R )  /\  C  e.  B )  ->  B  =  [ C ] R )
 
Theoremqliftlem 6667*  F, a function lift, is a subset of  R  X.  S. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   =>    |-  ( ( ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
 
Theoremqliftrel 6668*  F, a function lift, is a subset of  R  X.  S. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   =>    |-  ( ph  ->  F  C_  ( ( X /. R )  X.  Y ) )
 
Theoremqliftel 6669* Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   =>    |-  ( ph  ->  ( [ C ] R F D 
 <-> 
 E. x  e.  X  ( C R x  /\  D  =  A )
 ) )
 
Theoremqliftel1 6670* Elementhood in the relation  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   =>    |-  ( ( ph  /\  x  e.  X )  ->  [ x ] R F A )
 
Theoremqliftfun 6671* The function  F is the unique function defined by  F `  [
x ]  =  A, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   &    |-  ( x  =  y 
 ->  A  =  B )   =>    |-  ( ph  ->  ( Fun  F  <->  A. x A. y ( x R y  ->  A  =  B )
 ) )
 
Theoremqliftfund 6672* The function  F is the unique function defined by  F `  [
x ]  =  A, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   &    |-  ( x  =  y 
 ->  A  =  B )   &    |-  ( ( ph  /\  x R y )  ->  A  =  B )   =>    |-  ( ph  ->  Fun  F )
 
Theoremqliftfuns 6673* The function  F is the unique function defined by  F `  [
x ]  =  A, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   =>    |-  ( ph  ->  ( Fun  F  <->  A. y A. z
 ( y R z 
 ->  [_ y  /  x ]_ A  =  [_ z  /  x ]_ A ) ) )
 
Theoremqliftf 6674* The domain and codomain of the function  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   =>    |-  ( ph  ->  ( Fun  F  <->  F : ( X
 /. R ) --> Y ) )
 
Theoremqliftval 6675* The value of the function  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )   &    |-  ( ( ph  /\  x  e.  X )  ->  A  e.  Y )   &    |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  X  e.  _V )   &    |-  ( x  =  C  ->  A  =  B )   &    |-  ( ph  ->  Fun  F )   =>    |-  ( ( ph  /\  C  e.  X )  ->  ( F `  [ C ] R )  =  B )
 
Theoremecoptocl 6676* Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.)
 |-  S  =  ( ( B  X.  C )
 /. R )   &    |-  ( [ <. x ,  y >. ] R  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 ( x  e.  B  /\  y  e.  C )  ->  ph )   =>    |-  ( A  e.  S  ->  ps )
 
Theorem2ecoptocl 6677* Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.)
 |-  S  =  ( ( C  X.  D )
 /. R )   &    |-  ( [ <. x ,  y >. ] R  =  A  ->  ( ph  <->  ps ) )   &    |-  ( [ <. z ,  w >. ] R  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 ( ( x  e.  C  /\  y  e.  D )  /\  (
 z  e.  C  /\  w  e.  D )
 )  ->  ph )   =>    |-  ( ( A  e.  S  /\  B  e.  S )  ->  ch )
 
Theorem3ecoptocl 6678* Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.)
 |-  S  =  ( ( D  X.  D )
 /. R )   &    |-  ( [ <. x ,  y >. ] R  =  A  ->  ( ph  <->  ps ) )   &    |-  ( [ <. z ,  w >. ] R  =  B  ->  ( ps  <->  ch ) )   &    |-  ( [ <. v ,  u >. ] R  =  C  ->  ( ch  <->  th ) )   &    |-  (
 ( ( x  e.  D  /\  y  e.  D )  /\  (
 z  e.  D  /\  w  e.  D )  /\  ( v  e.  D  /\  u  e.  D ) )  ->  ph )   =>    |-  (
 ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  ->  th )
 
Theorembrecop 6679* Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996.)
 |- 
 .~  e.  _V   &    |-  .~  Er  ( G  X.  G )   &    |-  H  =  ( ( G  X.  G ) /.  .~  )   &    |- 
 .<_  =  { <. x ,  y >.  |  ( ( x  e.  H  /\  y  e.  H )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ] 
 .~  /\  y  =  [ <. v ,  u >. ]  .~  )  /\  ph ) ) }   &    |-  (
 ( ( ( z  e.  G  /\  w  e.  G )  /\  ( A  e.  G  /\  B  e.  G )
 )  /\  ( (
 v  e.  G  /\  u  e.  G )  /\  ( C  e.  G  /\  D  e.  G ) ) )  ->  (
 ( [ <. z ,  w >. ]  .~  =  [ <. A ,  B >. ]  .~  /\  [ <. v ,  u >. ] 
 .~  =  [ <. C ,  D >. ]  .~  )  ->  ( ph  <->  ps ) ) )   =>    |-  ( ( ( A  e.  G  /\  B  e.  G )  /\  ( C  e.  G  /\  D  e.  G )
 )  ->  ( [ <. A ,  B >. ] 
 .~  .<_  [ <. C ,  D >. ]  .~  <->  ps ) )
 
Theoremeroveu 6680* Lemma for eroprf 6682. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  J  =  ( A
 /. R )   &    |-  K  =  ( B /. S )   &    |-  ( ph  ->  T  e.  Z )   &    |-  ( ph  ->  R  Er  U )   &    |-  ( ph  ->  S  Er  V )   &    |-  ( ph  ->  T  Er  W )   &    |-  ( ph  ->  A 
 C_  U )   &    |-  ( ph  ->  B  C_  V )   &    |-  ( ph  ->  C  C_  W )   &    |-  ( ph  ->  .+ 
 : ( A  X.  B ) --> C )   &    |-  ( ( ph  /\  (
 ( r  e.  A  /\  s  e.  A )  /\  ( t  e.  B  /\  u  e.  B ) ) ) 
 ->  ( ( r R s  /\  t S u )  ->  (
 r  .+  t ) T ( s  .+  u ) ) )   =>    |-  ( ( ph  /\  ( X  e.  J  /\  Y  e.  K )
 )  ->  E! z E. p  e.  A  E. q  e.  B  ( ( X  =  [ p ] R  /\  Y  =  [ q ] S )  /\  z  =  [ ( p  .+  q ) ] T ) )
 
Theoremerovlem 6681* Lemma for eroprf 6682. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  J  =  ( A
 /. R )   &    |-  K  =  ( B /. S )   &    |-  ( ph  ->  T  e.  Z )   &    |-  ( ph  ->  R  Er  U )   &    |-  ( ph  ->  S  Er  V )   &    |-  ( ph  ->  T  Er  W )   &    |-  ( ph  ->  A 
 C_  U )   &    |-  ( ph  ->  B  C_  V )   &    |-  ( ph  ->  C  C_  W )   &    |-  ( ph  ->  .+ 
 : ( A  X.  B ) --> C )   &    |-  ( ( ph  /\  (
 ( r  e.  A  /\  s  e.  A )  /\  ( t  e.  B  /\  u  e.  B ) ) ) 
 ->  ( ( r R s  /\  t S u )  ->  (
 r  .+  t ) T ( s  .+  u ) ) )   &    |-  .+^ 
 =  { <. <. x ,  y >. ,  z >.  | 
 E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
 q ] S ) 
 /\  z  =  [
 ( p  .+  q
 ) ] T ) }   =>    |-  ( ph  ->  .+^  =  ( x  e.  J ,  y  e.  K  |->  ( iota
 z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
 q ] S ) 
 /\  z  =  [
 ( p  .+  q
 ) ] T ) ) ) )
 
Theoremeroprf 6682* Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  J  =  ( A
 /. R )   &    |-  K  =  ( B /. S )   &    |-  ( ph  ->  T  e.  Z )   &    |-  ( ph  ->  R  Er  U )   &    |-  ( ph  ->  S  Er  V )   &    |-  ( ph  ->  T  Er  W )   &    |-  ( ph  ->  A 
 C_  U )   &    |-  ( ph  ->  B  C_  V )   &    |-  ( ph  ->  C  C_  W )   &    |-  ( ph  ->  .+ 
 : ( A  X.  B ) --> C )   &    |-  ( ( ph  /\  (
 ( r  e.  A  /\  s  e.  A )  /\  ( t  e.  B  /\  u  e.  B ) ) ) 
 ->  ( ( r R s  /\  t S u )  ->  (
 r  .+  t ) T ( s  .+  u ) ) )   &    |-  .+^ 
 =  { <. <. x ,  y >. ,  z >.  | 
 E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
 q ] S ) 
 /\  z  =  [
 ( p  .+  q
 ) ] T ) }   &    |-  ( ph  ->  R  e.  X )   &    |-  ( ph  ->  S  e.  Y )   &    |-  L  =  ( C
 /. T )   =>    |-  ( ph  ->  .+^  : ( J  X.  K )
 --> L )
 
Theoremeroprf2 6683* Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.)
 |-  J  =  ( A
 /.  .~  )   &    |-  .+^  =  { <.
 <. x ,  y >. ,  z >.  |  E. p  e.  A  E. q  e.  A  ( ( x  =  [ p ]  .~  /\  y  =  [
 q ]  .~  )  /\  z  =  [
 ( p  .+  q
 ) ]  .~  ) }   &    |-  ( ph  ->  .~  e.  X )   &    |-  ( ph  ->  .~ 
 Er  U )   &    |-  ( ph  ->  A  C_  U )   &    |-  ( ph  ->  .+  :
 ( A  X.  A )
 --> A )   &    |-  ( ( ph  /\  ( ( r  e.  A  /\  s  e.  A )  /\  (
 t  e.  A  /\  u  e.  A )
 ) )  ->  (
 ( r  .~  s  /\  t  .~  u ) 
 ->  ( r  .+  t
 )  .~  ( s  .+  u ) ) )   =>    |-  ( ph  ->  .+^  : ( J  X.  J ) --> J )
 
Theoremecopoveq 6684* This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation 
.~ (specified by the hypothesis) in terms of its operation  F. (Contributed by NM, 16-Aug-1995.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   =>    |-  ( ( ( A  e.  S  /\  B  e.  S )  /\  ( C  e.  S  /\  D  e.  S )
 )  ->  ( <. A ,  B >.  .~  <. C ,  D >.  <->  ( A  .+  D )  =  ( B  .+  C ) ) )
 
Theoremecopovsym 6685* Assuming the operation  F is commutative, show that the relation  .~, specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   &    |-  ( x  .+  y )  =  (
 y  .+  x )   =>    |-  ( A  .~  B  ->  B  .~  A )
 
Theoremecopovtrn 6686* Assuming that operation  F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation  .~, specified by the first hypothesis, is transitive. (Contributed by NM, 11-Feb-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   &    |-  ( x  .+  y )  =  (
 y  .+  x )   &    |-  (
 ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( x  .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) )   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  (
 ( x  .+  y
 )  =  ( x 
 .+  z )  ->  y  =  z )
 )   =>    |-  ( ( A  .~  B  /\  B  .~  C )  ->  A  .~  C )
 
Theoremecopover 6687* Assuming that operation  F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation  .~, specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   &    |-  ( x  .+  y )  =  (
 y  .+  x )   &    |-  (
 ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( x  .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) )   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  (
 ( x  .+  y
 )  =  ( x 
 .+  z )  ->  y  =  z )
 )   =>    |- 
 .~  Er  ( S  X.  S )
 
Theoremecopovsymg 6688* Assuming the operation  F is commutative, show that the relation  .~, specified by the first hypothesis, is symmetric. (Contributed by Jim Kingdon, 1-Sep-2019.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  =  ( y  .+  x ) )   =>    |-  ( A  .~  B  ->  B  .~  A )
 
Theoremecopovtrng 6689* Assuming that operation  F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation  .~, specified by the first hypothesis, is transitive. (Contributed by Jim Kingdon, 1-Sep-2019.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  ->  (
 ( x  .+  y
 )  .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  ->  (
 ( x  .+  y
 )  =  ( x 
 .+  z )  ->  y  =  z )
 )   =>    |-  ( ( A  .~  B  /\  B  .~  C )  ->  A  .~  C )
 
Theoremecopoverg 6690* Assuming that operation  F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation  .~, specified by the first hypothesis, is an equivalence relation. (Contributed by Jim Kingdon, 1-Sep-2019.)
 |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  .+  u )  =  ( w  .+  v ) ) ) }   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  ->  (
 ( x  .+  y
 )  .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  ->  (
 ( x  .+  y
 )  =  ( x 
 .+  z )  ->  y  =  z )
 )   =>    |- 
 .~  Er  ( S  X.  S )
 
Theoremth3qlem1 6691* Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60. The third hypothesis is the compatibility assumption. (Contributed by NM, 3-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |- 
 .~  Er  S   &    |-  ( ( ( y  e.  S  /\  w  e.  S )  /\  ( z  e.  S  /\  v  e.  S ) )  ->  ( ( y  .~  w  /\  z  .~  v )  ->  ( y  .+  z ) 
 .~  ( w  .+  v ) ) )   =>    |-  ( ( A  e.  ( S /.  .~  )  /\  B  e.  ( S
 /.  .~  ) )  ->  E* x E. y E. z ( ( A  =  [ y ]  .~  /\  B  =  [
 z ]  .~  )  /\  x  =  [
 ( y  .+  z
 ) ]  .~  )
 )
 
Theoremth3qlem2 6692* Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. The fourth hypothesis is the compatibility assumption. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |- 
 .~  e.  _V   &    |-  .~  Er  ( S  X.  S )   &    |-  (
 ( ( ( w  e.  S  /\  v  e.  S )  /\  ( u  e.  S  /\  t  e.  S )
 )  /\  ( (
 s  e.  S  /\  f  e.  S )  /\  ( g  e.  S  /\  h  e.  S ) ) )  ->  ( ( <. w ,  v >.  .~  <. u ,  t >.  /\  <. s ,  f >.  .~  <. g ,  h >. )  ->  ( <. w ,  v >.  .+ 
 <. s ,  f >. ) 
 .~  ( <. u ,  t >.  .+  <. g ,  h >. ) ) )   =>    |-  ( ( A  e.  ( ( S  X.  S ) /.  .~  )  /\  B  e.  (
 ( S  X.  S ) /.  .~  ) ) 
 ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  .~  /\  B  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
 ( <. w ,  v >.  .+  <. u ,  t >. ) ]  .~  )
 )
 
Theoremth3qcor 6693* Corollary of Theorem 3Q of [Enderton] p. 60. (Contributed by NM, 12-Nov-1995.) (Revised by David Abernethy, 4-Jun-2013.)
 |- 
 .~  e.  _V   &    |-  .~  Er  ( S  X.  S )   &    |-  (
 ( ( ( w  e.  S  /\  v  e.  S )  /\  ( u  e.  S  /\  t  e.  S )
 )  /\  ( (
 s  e.  S  /\  f  e.  S )  /\  ( g  e.  S  /\  h  e.  S ) ) )  ->  ( ( <. w ,  v >.  .~  <. u ,  t >.  /\  <. s ,  f >.  .~  <. g ,  h >. )  ->  ( <. w ,  v >.  .+ 
 <. s ,  f >. ) 
 .~  ( <. u ,  t >.  .+  <. g ,  h >. ) ) )   &    |-  G  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  (
 ( S  X.  S ) /.  .~  ) ) 
 /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ] 
 .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [ ( <. w ,  v >.  .+ 
 <. u ,  t >. ) ]  .~  ) ) }   =>    |- 
 Fun  G
 
Theoremth3q 6694* Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 19-Dec-2013.)
 |- 
 .~  e.  _V   &    |-  .~  Er  ( S  X.  S )   &    |-  (
 ( ( ( w  e.  S  /\  v  e.  S )  /\  ( u  e.  S  /\  t  e.  S )
 )  /\  ( (
 s  e.  S  /\  f  e.  S )  /\  ( g  e.  S  /\  h  e.  S ) ) )  ->  ( ( <. w ,  v >.  .~  <. u ,  t >.  /\  <. s ,  f >.  .~  <. g ,  h >. )  ->  ( <. w ,  v >.  .+ 
 <. s ,  f >. ) 
 .~  ( <. u ,  t >.  .+  <. g ,  h >. ) ) )   &    |-  G  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  ( ( S  X.  S ) /.  .~  )  /\  y  e.  (
 ( S  X.  S ) /.  .~  ) ) 
 /\  E. w E. v E. u E. t ( ( x  =  [ <. w ,  v >. ] 
 .~  /\  y  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [ ( <. w ,  v >.  .+ 
 <. u ,  t >. ) ]  .~  ) ) }   =>    |-  ( ( ( A  e.  S  /\  B  e.  S )  /\  ( C  e.  S  /\  D  e.  S )
 )  ->  ( [ <. A ,  B >. ] 
 .~  G [ <. C ,  D >. ]  .~  )  =  [ ( <. A ,  B >.  .+ 
 <. C ,  D >. ) ]  .~  )
 
Theoremoviec 6695* Express an operation on equivalence classes of ordered pairs in terms of equivalence class of operations on ordered pairs. See iset.mm for additional comments describing the hypotheses. (Unnecessary distinct variable restrictions were removed by David Abernethy, 4-Jun-2013.) (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 4-Jun-2013.)
 |-  ( ( ( A  e.  S  /\  B  e.  S )  /\  ( C  e.  S  /\  D  e.  S )
 )  ->  H  e.  ( S  X.  S ) )   &    |-  ( ( ( a  e.  S  /\  b  e.  S )  /\  ( g  e.  S  /\  h  e.  S ) )  ->  K  e.  ( S  X.  S ) )   &    |-  ( ( ( c  e.  S  /\  d  e.  S )  /\  ( t  e.  S  /\  s  e.  S ) )  ->  L  e.  ( S  X.  S ) )   &    |-  .~  e.  _V   &    |-  .~  Er  ( S  X.  S )   &    |- 
 .~  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ph ) ) }   &    |-  (
 ( ( z  =  a  /\  w  =  b )  /\  (
 v  =  c  /\  u  =  d )
 )  ->  ( ph  <->  ps ) )   &    |-  ( ( ( z  =  g  /\  w  =  h )  /\  ( v  =  t 
 /\  u  =  s ) )  ->  ( ph 
 <->  ch ) )   &    |-  .+  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. ) 
 /\  z  =  J ) ) }   &    |-  (
 ( ( w  =  a  /\  v  =  b )  /\  ( u  =  g  /\  f  =  h )
 )  ->  J  =  K )   &    |-  ( ( ( w  =  c  /\  v  =  d )  /\  ( u  =  t 
 /\  f  =  s ) )  ->  J  =  L )   &    |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  J  =  H )   &    |-  .+^  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  Q  /\  y  e.  Q )  /\  E. a E. b E. c E. d
 ( ( x  =  [ <. a ,  b >. ]  .~  /\  y  =  [ <. c ,  d >. ]  .~  )  /\  z  =  [ ( <. a ,  b >.  .+ 
 <. c ,  d >. ) ]  .~  ) ) }   &    |-  Q  =  ( ( S  X.  S ) /.  .~  )   &    |-  (
 ( ( ( a  e.  S  /\  b  e.  S )  /\  (
 c  e.  S  /\  d  e.  S )
 )  /\  ( (
 g  e.  S  /\  h  e.  S )  /\  ( t  e.  S  /\  s  e.  S ) ) )  ->  ( ( ps  /\  ch )  ->  K  .~  L ) )   =>    |-  ( ( ( A  e.  S  /\  B  e.  S )  /\  ( C  e.  S  /\  D  e.  S ) )  ->  ( [ <. A ,  B >. ] 
 .~  .+^  [ <. C ,  D >. ]  .~  )  =  [ H ]  .~  )
 
Theoremecovcom 6696* Lemma used to transfer a commutative law via an equivalence relation. Most uses will want ecovicom 6697 instead. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
 |-  C  =  ( ( S  X.  S )
 /.  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .+  [ <. z ,  w >. ]  .~  )  =  [ <. D ,  G >. ]  .~  )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( [ <. z ,  w >. ] 
 .~  .+  [ <. x ,  y >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )   &    |-  D  =  H   &    |-  G  =  J   =>    |-  (
 ( A  e.  C  /\  B  e.  C ) 
 ->  ( A  .+  B )  =  ( B  .+  A ) )
 
Theoremecovicom 6697* Lemma used to transfer a commutative law via an equivalence relation. (Contributed by Jim Kingdon, 15-Sep-2019.)
 |-  C  =  ( ( S  X.  S )
 /.  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .+  [ <. z ,  w >. ]  .~  )  =  [ <. D ,  G >. ]  .~  )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( [ <. z ,  w >. ] 
 .~  .+  [ <. x ,  y >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  D  =  H )   &    |-  ( ( ( x  e.  S  /\  y  e.  S )  /\  ( z  e.  S  /\  w  e.  S ) )  ->  G  =  J )   =>    |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( A  .+  B )  =  ( B  .+  A ) )
 
Theoremecovass 6698* Lemma used to transfer an associative law via an equivalence relation. In most cases ecoviass 6699 will be more useful. (Contributed by NM, 31-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
 |-  D  =  ( ( S  X.  S )
 /.  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .+  [ <. z ,  w >. ]  .~  )  =  [ <. G ,  H >. ]  .~  )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( [ <. z ,  w >. ] 
 .~  .+  [ <. v ,  u >. ]  .~  )  =  [ <. N ,  Q >. ]  .~  )   &    |-  (
 ( ( G  e.  S  /\  H  e.  S )  /\  ( v  e.  S  /\  u  e.  S ) )  ->  ( [ <. G ,  H >. ]  .~  .+  [ <. v ,  u >. ]  .~  )  =  [ <. J ,  K >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  ( N  e.  S  /\  Q  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .+  [ <. N ,  Q >. ]  .~  )  =  [ <. L ,  M >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( G  e.  S  /\  H  e.  S ) )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( N  e.  S  /\  Q  e.  S ) )   &    |-  J  =  L   &    |-  K  =  M   =>    |-  (
 ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  ->  ( ( A  .+  B )  .+  C )  =  ( A  .+  ( B  .+  C ) ) )
 
Theoremecoviass 6699* Lemma used to transfer an associative law via an equivalence relation. (Contributed by Jim Kingdon, 16-Sep-2019.)
 |-  D  =  ( ( S  X.  S )
 /.  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .+  [ <. z ,  w >. ]  .~  )  =  [ <. G ,  H >. ]  .~  )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( [ <. z ,  w >. ] 
 .~  .+  [ <. v ,  u >. ]  .~  )  =  [ <. N ,  Q >. ]  .~  )   &    |-  (
 ( ( G  e.  S  /\  H  e.  S )  /\  ( v  e.  S  /\  u  e.  S ) )  ->  ( [ <. G ,  H >. ]  .~  .+  [ <. v ,  u >. ]  .~  )  =  [ <. J ,  K >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  ( N  e.  S  /\  Q  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .+  [ <. N ,  Q >. ]  .~  )  =  [ <. L ,  M >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( G  e.  S  /\  H  e.  S ) )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( N  e.  S  /\  Q  e.  S ) )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )  /\  ( v  e.  S  /\  u  e.  S ) )  ->  J  =  L )   &    |-  ( ( ( x  e.  S  /\  y  e.  S )  /\  ( z  e.  S  /\  w  e.  S )  /\  ( v  e.  S  /\  u  e.  S ) )  ->  K  =  M )   =>    |-  (
 ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  ->  ( ( A  .+  B )  .+  C )  =  ( A  .+  ( B  .+  C ) ) )
 
Theoremecovdi 6700* Lemma used to transfer a distributive law via an equivalence relation. Most likely ecovidi 6701 will be more helpful. (Contributed by NM, 2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.)
 |-  D  =  ( ( S  X.  S )
 /.  .~  )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( [ <. z ,  w >. ] 
 .~  .+  [ <. v ,  u >. ]  .~  )  =  [ <. M ,  N >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  ( M  e.  S  /\  N  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .x.  [ <. M ,  N >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .x.  [ <. z ,  w >. ]  .~  )  =  [ <. W ,  X >. ]  .~  )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( [ <. x ,  y >. ] 
 .~  .x.  [ <. v ,  u >. ]  .~  )  =  [ <. Y ,  Z >. ]  .~  )   &    |-  (
 ( ( W  e.  S  /\  X  e.  S )  /\  ( Y  e.  S  /\  Z  e.  S ) )  ->  ( [ <. W ,  X >. ] 
 .~  .+  [ <. Y ,  Z >. ]  .~  )  =  [ <. K ,  L >. ]  .~  )   &    |-  (
 ( ( z  e.  S  /\  w  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( M  e.  S  /\  N  e.  S ) )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 )  ->  ( W  e.  S  /\  X  e.  S ) )   &    |-  (
 ( ( x  e.  S  /\  y  e.  S )  /\  (
 v  e.  S  /\  u  e.  S )
 )  ->  ( Y  e.  S  /\  Z  e.  S ) )   &    |-  H  =  K   &    |-  J  =  L   =>    |-  (
 ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  ->  ( A  .x.  ( B  .+  C ) )  =  ( ( A 
 .x.  B )  .+  ( A  .x.  C ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >