ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabg Unicode version

Theorem elabg 2918
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.)
Hypothesis
Ref Expression
elabg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elabg  |-  ( A  e.  V  ->  ( A  e.  { x  |  ph }  <->  ps )
)
Distinct variable groups:    ps, x    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem elabg
StepHypRef Expression
1 nfcv 2347 . 2  |-  F/_ x A
2 nfv 1550 . 2  |-  F/ x ps
3 elabg.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
41, 2, 3elabgf 2914 1  |-  ( A  e.  V  ->  ( A  e.  { x  |  ph }  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1372    e. wcel 2175   {cab 2190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773
This theorem is referenced by:  elab2g  2919  intmin3  3911  finds  4647  elxpi  4690  elabrexg  5826  ovelrn  6094  elfi  7072  indpi  7454  peano5nnnn  8004  peano5nni  9038  lss1d  14116  lspsn  14149  zndvds  14382  eltg  14495  eltg2  14496
  Copyright terms: Public domain W3C validator