Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elabg | Unicode version |
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
elabg.1 |
Ref | Expression |
---|---|
elabg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 | |
2 | nfv 1516 | . 2 | |
3 | elabg.1 | . 2 | |
4 | 1, 2, 3 | elabgf 2868 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 cab 2151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: elab2g 2873 intmin3 3851 finds 4577 elxpi 4620 ovelrn 5990 elfi 6936 indpi 7283 peano5nnnn 7833 peano5nni 8860 eltg 12692 eltg2 12693 |
Copyright terms: Public domain | W3C validator |