| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elabg | Unicode version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) |
| Ref | Expression |
|---|---|
| elabg.1 |
|
| Ref | Expression |
|---|---|
| elabg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 |
. 2
| |
| 2 | nfv 1551 |
. 2
| |
| 3 | elabg.1 |
. 2
| |
| 4 | 1, 2, 3 | elabgf 2915 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: elab2g 2920 intmin3 3912 finds 4648 elxpi 4691 elabrexg 5827 ovelrn 6095 elfi 7073 indpi 7455 peano5nnnn 8005 peano5nni 9039 lss1d 14145 lspsn 14178 zndvds 14411 eltg 14524 eltg2 14525 |
| Copyright terms: Public domain | W3C validator |