Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabg2 GIF version

Theorem elabg2 15431
Description: One implication of elabg 2910. (Contributed by BJ, 21-Nov-2019.)
Hypothesis
Ref Expression
elabg2.1 (𝑥 = 𝐴 → (𝜓𝜑))
Assertion
Ref Expression
elabg2 (𝐴𝑉 → (𝜓𝐴 ∈ {𝑥𝜑}))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elabg2
StepHypRef Expression
1 nfcv 2339 . 2 𝑥𝐴
2 nfv 1542 . 2 𝑥𝜓
3 elabg2.1 . 2 (𝑥 = 𝐴 → (𝜓𝜑))
41, 2, 3elabgf2 15426 1 (𝐴𝑉 → (𝜓𝐴 ∈ {𝑥𝜑}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  {cab 2182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator