Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabg2 GIF version

Theorem elabg2 13666
Description: One implication of elabg 2872. (Contributed by BJ, 21-Nov-2019.)
Hypothesis
Ref Expression
elabg2.1 (𝑥 = 𝐴 → (𝜓𝜑))
Assertion
Ref Expression
elabg2 (𝐴𝑉 → (𝜓𝐴 ∈ {𝑥𝜑}))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elabg2
StepHypRef Expression
1 nfcv 2308 . 2 𝑥𝐴
2 nfv 1516 . 2 𝑥𝜓
3 elabg2.1 . 2 (𝑥 = 𝐴 → (𝜓𝜑))
41, 2, 3elabgf2 13661 1 (𝐴𝑉 → (𝜓𝐴 ∈ {𝑥𝜑}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  {cab 2151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator