Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > elabg2 | GIF version |
Description: One implication of elabg 2870. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
elabg2.1 | ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) |
Ref | Expression |
---|---|
elabg2 | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2306 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1515 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | elabg2.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜓 → 𝜑)) | |
4 | 1, 2, 3 | elabgf2 13554 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1342 ∈ wcel 2135 {cab 2150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-v 2726 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |