ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleq12 Unicode version

Theorem eleq12 2152
Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
eleq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  e.  C  <->  B  e.  D ) )

Proof of Theorem eleq12
StepHypRef Expression
1 eleq1 2150 . 2  |-  ( A  =  B  ->  ( A  e.  C  <->  B  e.  C ) )
2 eleq2 2151 . 2  |-  ( C  =  D  ->  ( B  e.  C  <->  B  e.  D ) )
31, 2sylan9bb 450 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  e.  C  <->  B  e.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-17 1464  ax-ial 1472  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-cleq 2081  df-clel 2084
This theorem is referenced by:  trel  3935  pwnss  3986  epelg  4108  preleq  4361  acexmid  5633
  Copyright terms: Public domain W3C validator