ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleq12 Unicode version

Theorem eleq12 2270
Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
eleq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  e.  C  <->  B  e.  D ) )

Proof of Theorem eleq12
StepHypRef Expression
1 eleq1 2268 . 2  |-  ( A  =  B  ->  ( A  e.  C  <->  B  e.  C ) )
2 eleq2 2269 . 2  |-  ( C  =  D  ->  ( B  e.  C  <->  B  e.  D ) )
31, 2sylan9bb 462 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  e.  C  <->  B  e.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-clel 2201
This theorem is referenced by:  trel  4149  pwnss  4203  epelg  4337  preleq  4603  acexmid  5943  cldval  14571
  Copyright terms: Public domain W3C validator