Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleq12 | Unicode version |
Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
eleq12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . 2 | |
2 | eleq2 2230 | . 2 | |
3 | 1, 2 | sylan9bb 458 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: trel 4087 pwnss 4138 epelg 4268 preleq 4532 acexmid 5841 cldval 12739 |
Copyright terms: Public domain | W3C validator |