![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq12 | GIF version |
Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
eleq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2177 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
2 | eleq2 2178 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | |
3 | 1, 2 | sylan9bb 455 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1314 ∈ wcel 1463 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-4 1470 ax-17 1489 ax-ial 1497 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-cleq 2108 df-clel 2111 |
This theorem is referenced by: trel 3993 pwnss 4043 epelg 4172 preleq 4430 acexmid 5727 cldval 12111 |
Copyright terms: Public domain | W3C validator |