ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleq12 GIF version

Theorem eleq12 2269
Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
eleq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))

Proof of Theorem eleq12
StepHypRef Expression
1 eleq1 2267 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 eleq2 2268 . 2 (𝐶 = 𝐷 → (𝐵𝐶𝐵𝐷))
31, 2sylan9bb 462 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-cleq 2197  df-clel 2200
This theorem is referenced by:  trel  4148  pwnss  4202  epelg  4336  preleq  4602  acexmid  5942  cldval  14513
  Copyright terms: Public domain W3C validator