ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleq12 GIF version

Theorem eleq12 2261
Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
eleq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))

Proof of Theorem eleq12
StepHypRef Expression
1 eleq1 2259 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
2 eleq2 2260 . 2 (𝐶 = 𝐷 → (𝐵𝐶𝐵𝐷))
31, 2sylan9bb 462 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192
This theorem is referenced by:  trel  4138  pwnss  4192  epelg  4325  preleq  4591  acexmid  5921  cldval  14335
  Copyright terms: Public domain W3C validator