| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > epelg | Unicode version | ||
| Description: The epsilon relation and membership are the same. General version of epel 4339. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| epelg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4045 |
. . . 4
| |
| 2 | elopab 4304 |
. . . . . 6
| |
| 3 | vex 2775 |
. . . . . . . . . . 11
| |
| 4 | vex 2775 |
. . . . . . . . . . 11
| |
| 5 | 3, 4 | pm3.2i 272 |
. . . . . . . . . 10
|
| 6 | opeqex 4294 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | mpbiri 168 |
. . . . . . . . 9
|
| 8 | 7 | simpld 112 |
. . . . . . . 8
|
| 9 | 8 | adantr 276 |
. . . . . . 7
|
| 10 | 9 | exlimivv 1920 |
. . . . . 6
|
| 11 | 2, 10 | sylbi 121 |
. . . . 5
|
| 12 | df-eprel 4336 |
. . . . 5
| |
| 13 | 11, 12 | eleq2s 2300 |
. . . 4
|
| 14 | 1, 13 | sylbi 121 |
. . 3
|
| 15 | 14 | a1i 9 |
. 2
|
| 16 | elex 2783 |
. . 3
| |
| 17 | 16 | a1i 9 |
. 2
|
| 18 | eleq12 2270 |
. . . 4
| |
| 19 | 18, 12 | brabga 4310 |
. . 3
|
| 20 | 19 | expcom 116 |
. 2
|
| 21 | 15, 17, 20 | pm5.21ndd 707 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-eprel 4336 |
| This theorem is referenced by: epelc 4338 efrirr 4400 smoiso 6388 ecidg 6686 ordiso2 7137 ltpiord 7432 |
| Copyright terms: Public domain | W3C validator |