ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epelg Unicode version

Theorem epelg 4108
Description: The epsilon relation and membership are the same. General version of epel 4110. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
epelg  |-  ( B  e.  V  ->  ( A  _E  B  <->  A  e.  B ) )

Proof of Theorem epelg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 3838 . . . 4  |-  ( A  _E  B  <->  <. A ,  B >.  e.  _E  )
2 elopab 4076 . . . . . 6  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  x  e.  y }  <->  E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  x  e.  y ) )
3 vex 2622 . . . . . . . . . . 11  |-  x  e. 
_V
4 vex 2622 . . . . . . . . . . 11  |-  y  e. 
_V
53, 4pm3.2i 266 . . . . . . . . . 10  |-  ( x  e.  _V  /\  y  e.  _V )
6 opeqex 4067 . . . . . . . . . 10  |-  ( <. A ,  B >.  = 
<. x ,  y >.  ->  ( ( A  e. 
_V  /\  B  e.  _V )  <->  ( x  e. 
_V  /\  y  e.  _V ) ) )
75, 6mpbiri 166 . . . . . . . . 9  |-  ( <. A ,  B >.  = 
<. x ,  y >.  ->  ( A  e.  _V  /\  B  e.  _V )
)
87simpld 110 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. x ,  y >.  ->  A  e.  _V )
98adantr 270 . . . . . . 7  |-  ( (
<. A ,  B >.  = 
<. x ,  y >.  /\  x  e.  y
)  ->  A  e.  _V )
109exlimivv 1824 . . . . . 6  |-  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  x  e.  y
)  ->  A  e.  _V )
112, 10sylbi 119 . . . . 5  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  x  e.  y }  ->  A  e. 
_V )
12 df-eprel 4107 . . . . 5  |-  _E  =  { <. x ,  y
>.  |  x  e.  y }
1311, 12eleq2s 2182 . . . 4  |-  ( <. A ,  B >.  e.  _E  ->  A  e.  _V )
141, 13sylbi 119 . . 3  |-  ( A  _E  B  ->  A  e.  _V )
1514a1i 9 . 2  |-  ( B  e.  V  ->  ( A  _E  B  ->  A  e.  _V ) )
16 elex 2630 . . 3  |-  ( A  e.  B  ->  A  e.  _V )
1716a1i 9 . 2  |-  ( B  e.  V  ->  ( A  e.  B  ->  A  e.  _V ) )
18 eleq12 2152 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  e.  y  <-> 
A  e.  B ) )
1918, 12brabga 4082 . . 3  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  _E  B  <->  A  e.  B ) )
2019expcom 114 . 2  |-  ( B  e.  V  ->  ( A  e.  _V  ->  ( A  _E  B  <->  A  e.  B ) ) )
2115, 17, 20pm5.21ndd 656 1  |-  ( B  e.  V  ->  ( A  _E  B  <->  A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289   E.wex 1426    e. wcel 1438   _Vcvv 2619   <.cop 3444   class class class wbr 3837   {copab 3890    _E cep 4105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-eprel 4107
This theorem is referenced by:  epelc  4109  efrirr  4171  smoiso  6049  ecidg  6336  ordiso2  6707  ltpiord  6857
  Copyright terms: Public domain W3C validator