Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > epelg | Unicode version |
Description: The epsilon relation and membership are the same. General version of epel 4277. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
epelg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3990 | . . . 4 | |
2 | elopab 4243 | . . . . . 6 | |
3 | vex 2733 | . . . . . . . . . . 11 | |
4 | vex 2733 | . . . . . . . . . . 11 | |
5 | 3, 4 | pm3.2i 270 | . . . . . . . . . 10 |
6 | opeqex 4234 | . . . . . . . . . 10 | |
7 | 5, 6 | mpbiri 167 | . . . . . . . . 9 |
8 | 7 | simpld 111 | . . . . . . . 8 |
9 | 8 | adantr 274 | . . . . . . 7 |
10 | 9 | exlimivv 1889 | . . . . . 6 |
11 | 2, 10 | sylbi 120 | . . . . 5 |
12 | df-eprel 4274 | . . . . 5 | |
13 | 11, 12 | eleq2s 2265 | . . . 4 |
14 | 1, 13 | sylbi 120 | . . 3 |
15 | 14 | a1i 9 | . 2 |
16 | elex 2741 | . . 3 | |
17 | 16 | a1i 9 | . 2 |
18 | eleq12 2235 | . . . 4 | |
19 | 18, 12 | brabga 4249 | . . 3 |
20 | 19 | expcom 115 | . 2 |
21 | 15, 17, 20 | pm5.21ndd 700 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cvv 2730 cop 3586 class class class wbr 3989 copab 4049 cep 4272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-eprel 4274 |
This theorem is referenced by: epelc 4276 efrirr 4338 smoiso 6281 ecidg 6577 ordiso2 7012 ltpiord 7281 |
Copyright terms: Public domain | W3C validator |