ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cldval Unicode version

Theorem cldval 14335
Description: The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
cldval.1  |-  X  = 
U. J
Assertion
Ref Expression
cldval  |-  ( J  e.  Top  ->  ( Clsd `  J )  =  { x  e.  ~P X  |  ( X  \  x )  e.  J } )
Distinct variable groups:    x, J    x, X

Proof of Theorem cldval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 cldval.1 . . . 4  |-  X  = 
U. J
21topopn 14244 . . 3  |-  ( J  e.  Top  ->  X  e.  J )
3 pwexg 4213 . . 3  |-  ( X  e.  J  ->  ~P X  e.  _V )
4 rabexg 4176 . . 3  |-  ( ~P X  e.  _V  ->  { x  e.  ~P X  |  ( X  \  x )  e.  J }  e.  _V )
52, 3, 43syl 17 . 2  |-  ( J  e.  Top  ->  { x  e.  ~P X  |  ( X  \  x )  e.  J }  e.  _V )
6 unieq 3848 . . . . . 6  |-  ( j  =  J  ->  U. j  =  U. J )
76, 1eqtr4di 2247 . . . . 5  |-  ( j  =  J  ->  U. j  =  X )
87pweqd 3610 . . . 4  |-  ( j  =  J  ->  ~P U. j  =  ~P X
)
97difeq1d 3280 . . . . 5  |-  ( j  =  J  ->  ( U. j  \  x
)  =  ( X 
\  x ) )
10 eleq12 2261 . . . . 5  |-  ( ( ( U. j  \  x )  =  ( X  \  x )  /\  j  =  J )  ->  ( ( U. j  \  x
)  e.  j  <->  ( X  \  x )  e.  J
) )
119, 10mpancom 422 . . . 4  |-  ( j  =  J  ->  (
( U. j  \  x )  e.  j  <-> 
( X  \  x
)  e.  J ) )
128, 11rabeqbidv 2758 . . 3  |-  ( j  =  J  ->  { x  e.  ~P U. j  |  ( U. j  \  x )  e.  j }  =  { x  e.  ~P X  |  ( X  \  x )  e.  J } )
13 df-cld 14331 . . 3  |-  Clsd  =  ( j  e.  Top  |->  { x  e.  ~P U. j  |  ( U. j  \  x )  e.  j } )
1412, 13fvmptg 5637 . 2  |-  ( ( J  e.  Top  /\  { x  e.  ~P X  |  ( X  \  x )  e.  J }  e.  _V )  ->  ( Clsd `  J
)  =  { x  e.  ~P X  |  ( X  \  x )  e.  J } )
155, 14mpdan 421 1  |-  ( J  e.  Top  ->  ( Clsd `  J )  =  { x  e.  ~P X  |  ( X  \  x )  e.  J } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   {crab 2479   _Vcvv 2763    \ cdif 3154   ~Pcpw 3605   U.cuni 3839   ` cfv 5258   Topctop 14233   Clsdccld 14328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-top 14234  df-cld 14331
This theorem is referenced by:  iscld  14339
  Copyright terms: Public domain W3C validator