Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > preleq | Unicode version |
Description: Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.) |
Ref | Expression |
---|---|
preleq.1 | |
preleq.2 | |
preleq.3 | |
preleq.4 |
Ref | Expression |
---|---|
preleq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2lp 4531 | . . . . 5 | |
2 | eleq12 2231 | . . . . . 6 | |
3 | 2 | anbi1d 461 | . . . . 5 |
4 | 1, 3 | mtbiri 665 | . . . 4 |
5 | 4 | con2i 617 | . . 3 |
6 | 5 | adantr 274 | . 2 |
7 | preleq.1 | . . . . 5 | |
8 | preleq.2 | . . . . 5 | |
9 | preleq.3 | . . . . 5 | |
10 | preleq.4 | . . . . 5 | |
11 | 7, 8, 9, 10 | preq12b 3750 | . . . 4 |
12 | 11 | biimpi 119 | . . 3 |
13 | 12 | adantl 275 | . 2 |
14 | 6, 13 | ecased 1339 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 wceq 1343 wcel 2136 cvv 2726 cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-dif 3118 df-un 3120 df-sn 3582 df-pr 3583 |
This theorem is referenced by: opthreg 4533 |
Copyright terms: Public domain | W3C validator |