ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preleq Unicode version

Theorem preleq 4621
Description: Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.)
Hypotheses
Ref Expression
preleq.1  |-  A  e. 
_V
preleq.2  |-  B  e. 
_V
preleq.3  |-  C  e. 
_V
preleq.4  |-  D  e. 
_V
Assertion
Ref Expression
preleq  |-  ( ( ( A  e.  B  /\  C  e.  D
)  /\  { A ,  B }  =  { C ,  D }
)  ->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem preleq
StepHypRef Expression
1 en2lp 4620 . . . . 5  |-  -.  ( D  e.  C  /\  C  e.  D )
2 eleq12 2272 . . . . . 6  |-  ( ( A  =  D  /\  B  =  C )  ->  ( A  e.  B  <->  D  e.  C ) )
32anbi1d 465 . . . . 5  |-  ( ( A  =  D  /\  B  =  C )  ->  ( ( A  e.  B  /\  C  e.  D )  <->  ( D  e.  C  /\  C  e.  D ) ) )
41, 3mtbiri 677 . . . 4  |-  ( ( A  =  D  /\  B  =  C )  ->  -.  ( A  e.  B  /\  C  e.  D ) )
54con2i 628 . . 3  |-  ( ( A  e.  B  /\  C  e.  D )  ->  -.  ( A  =  D  /\  B  =  C ) )
65adantr 276 . 2  |-  ( ( ( A  e.  B  /\  C  e.  D
)  /\  { A ,  B }  =  { C ,  D }
)  ->  -.  ( A  =  D  /\  B  =  C )
)
7 preleq.1 . . . . 5  |-  A  e. 
_V
8 preleq.2 . . . . 5  |-  B  e. 
_V
9 preleq.3 . . . . 5  |-  C  e. 
_V
10 preleq.4 . . . . 5  |-  D  e. 
_V
117, 8, 9, 10preq12b 3824 . . . 4  |-  ( { A ,  B }  =  { C ,  D } 
<->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C )
) )
1211biimpi 120 . . 3  |-  ( { A ,  B }  =  { C ,  D }  ->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C )
) )
1312adantl 277 . 2  |-  ( ( ( A  e.  B  /\  C  e.  D
)  /\  { A ,  B }  =  { C ,  D }
)  ->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C ) ) )
146, 13ecased 1362 1  |-  ( ( ( A  e.  B  /\  C  e.  D
)  /\  { A ,  B }  =  { C ,  D }
)  ->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178   _Vcvv 2776   {cpr 3644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-dif 3176  df-un 3178  df-sn 3649  df-pr 3650
This theorem is referenced by:  opthreg  4622
  Copyright terms: Public domain W3C validator