| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preleq | Unicode version | ||
| Description: Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.) |
| Ref | Expression |
|---|---|
| preleq.1 |
|
| preleq.2 |
|
| preleq.3 |
|
| preleq.4 |
|
| Ref | Expression |
|---|---|
| preleq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2lp 4602 |
. . . . 5
| |
| 2 | eleq12 2270 |
. . . . . 6
| |
| 3 | 2 | anbi1d 465 |
. . . . 5
|
| 4 | 1, 3 | mtbiri 677 |
. . . 4
|
| 5 | 4 | con2i 628 |
. . 3
|
| 6 | 5 | adantr 276 |
. 2
|
| 7 | preleq.1 |
. . . . 5
| |
| 8 | preleq.2 |
. . . . 5
| |
| 9 | preleq.3 |
. . . . 5
| |
| 10 | preleq.4 |
. . . . 5
| |
| 11 | 7, 8, 9, 10 | preq12b 3811 |
. . . 4
|
| 12 | 11 | biimpi 120 |
. . 3
|
| 13 | 12 | adantl 277 |
. 2
|
| 14 | 6, 13 | ecased 1362 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-dif 3168 df-un 3170 df-sn 3639 df-pr 3640 |
| This theorem is referenced by: opthreg 4604 |
| Copyright terms: Public domain | W3C validator |