ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trel Unicode version

Theorem trel 4094
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
trel  |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  A )  ->  B  e.  A ) )

Proof of Theorem trel
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 4089 . 2  |-  ( Tr  A  <->  A. y A. x
( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A ) )
2 eleq12 2235 . . . . . 6  |-  ( ( y  =  B  /\  x  =  C )  ->  ( y  e.  x  <->  B  e.  C ) )
3 eleq1 2233 . . . . . . 7  |-  ( x  =  C  ->  (
x  e.  A  <->  C  e.  A ) )
43adantl 275 . . . . . 6  |-  ( ( y  =  B  /\  x  =  C )  ->  ( x  e.  A  <->  C  e.  A ) )
52, 4anbi12d 470 . . . . 5  |-  ( ( y  =  B  /\  x  =  C )  ->  ( ( y  e.  x  /\  x  e.  A )  <->  ( B  e.  C  /\  C  e.  A ) ) )
6 eleq1 2233 . . . . . 6  |-  ( y  =  B  ->  (
y  e.  A  <->  B  e.  A ) )
76adantr 274 . . . . 5  |-  ( ( y  =  B  /\  x  =  C )  ->  ( y  e.  A  <->  B  e.  A ) )
85, 7imbi12d 233 . . . 4  |-  ( ( y  =  B  /\  x  =  C )  ->  ( ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A )  <->  ( ( B  e.  C  /\  C  e.  A )  ->  B  e.  A ) ) )
98spc2gv 2821 . . 3  |-  ( ( B  e.  C  /\  C  e.  A )  ->  ( A. y A. x ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A )  ->  (
( B  e.  C  /\  C  e.  A
)  ->  B  e.  A ) ) )
109pm2.43b 52 . 2  |-  ( A. y A. x ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A )  ->  ( ( B  e.  C  /\  C  e.  A )  ->  B  e.  A ) )
111, 10sylbi 120 1  |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  A )  ->  B  e.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    = wceq 1348    e. wcel 2141   Tr wtr 4087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797  df-tr 4088
This theorem is referenced by:  trel3  4095  ordtr1  4373  suctr  4406  trsuc  4407  ordn2lp  4529
  Copyright terms: Public domain W3C validator