| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trel | Unicode version | ||
| Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| trel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr2 4143 |
. 2
| |
| 2 | eleq12 2269 |
. . . . . 6
| |
| 3 | eleq1 2267 |
. . . . . . 7
| |
| 4 | 3 | adantl 277 |
. . . . . 6
|
| 5 | 2, 4 | anbi12d 473 |
. . . . 5
|
| 6 | eleq1 2267 |
. . . . . 6
| |
| 7 | 6 | adantr 276 |
. . . . 5
|
| 8 | 5, 7 | imbi12d 234 |
. . . 4
|
| 9 | 8 | spc2gv 2863 |
. . 3
|
| 10 | 9 | pm2.43b 52 |
. 2
|
| 11 | 1, 10 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 df-uni 3850 df-tr 4142 |
| This theorem is referenced by: trel3 4149 ordtr1 4434 suctr 4467 trsuc 4468 ordn2lp 4592 |
| Copyright terms: Public domain | W3C validator |