Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > trel | Unicode version |
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
trel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr2 4064 | . 2 | |
2 | eleq12 2222 | . . . . . 6 | |
3 | eleq1 2220 | . . . . . . 7 | |
4 | 3 | adantl 275 | . . . . . 6 |
5 | 2, 4 | anbi12d 465 | . . . . 5 |
6 | eleq1 2220 | . . . . . 6 | |
7 | 6 | adantr 274 | . . . . 5 |
8 | 5, 7 | imbi12d 233 | . . . 4 |
9 | 8 | spc2gv 2803 | . . 3 |
10 | 9 | pm2.43b 52 | . 2 |
11 | 1, 10 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1333 wceq 1335 wcel 2128 wtr 4062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 df-ss 3115 df-uni 3773 df-tr 4063 |
This theorem is referenced by: trel3 4070 ordtr1 4347 suctr 4380 trsuc 4381 ordn2lp 4502 |
Copyright terms: Public domain | W3C validator |