ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elini Unicode version

Theorem elini 3320
Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elini.1  |-  A  e.  B
elini.2  |-  A  e.  C
Assertion
Ref Expression
elini  |-  A  e.  ( B  i^i  C
)

Proof of Theorem elini
StepHypRef Expression
1 elini.1 . 2  |-  A  e.  B
2 elini.2 . 2  |-  A  e.  C
3 elin 3319 . 2  |-  ( A  e.  ( B  i^i  C )  <->  ( A  e.  B  /\  A  e.  C ) )
41, 2, 3mpbir2an 942 1  |-  A  e.  ( B  i^i  C
)
Colors of variables: wff set class
Syntax hints:    e. wcel 2148    i^i cin 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-in 3136
This theorem is referenced by:  exmidonfinlem  7192  taupi  14823
  Copyright terms: Public domain W3C validator