ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elind Unicode version

Theorem elind 3321
Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
elind.1  |-  ( ph  ->  X  e.  A )
elind.2  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
elind  |-  ( ph  ->  X  e.  ( A  i^i  B ) )

Proof of Theorem elind
StepHypRef Expression
1 elind.1 . 2  |-  ( ph  ->  X  e.  A )
2 elind.2 . 2  |-  ( ph  ->  X  e.  B )
3 elin 3319 . 2  |-  ( X  e.  ( A  i^i  B )  <->  ( X  e.  A  /\  X  e.  B ) )
41, 2, 3sylanbrc 417 1  |-  ( ph  ->  X  e.  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148    i^i cin 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-in 3136
This theorem is referenced by:  elfir  6972  infpwfidom  7197  nninfdclemcl  12449  nninfdclemp1  12451  strslfv2d  12505  insubm  12872  baspartn  13553  bastg  13564  isopn3  13628  restbasg  13671  lmss  13749  metrest  14009  tgioo  14049  dvmulxxbr  14169  pilem3  14207  2sqlem7  14471
  Copyright terms: Public domain W3C validator