| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elind | Unicode version | ||
| Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| elind.1 |
|
| elind.2 |
|
| Ref | Expression |
|---|---|
| elind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elind.1 |
. 2
| |
| 2 | elind.2 |
. 2
| |
| 3 | elin 3356 |
. 2
| |
| 4 | 1, 2, 3 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 |
| This theorem is referenced by: elfir 7075 infpwfidom 7306 nninfdclemcl 12819 nninfdclemp1 12821 strslfv2d 12875 insubm 13317 2idl0 14274 2idl1 14275 baspartn 14522 bastg 14533 isopn3 14597 restbasg 14640 lmss 14718 metrest 14978 tgioo 15026 dvmulxxbr 15174 elply2 15207 pilem3 15255 2sqlem7 15598 |
| Copyright terms: Public domain | W3C validator |