| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elind | Unicode version | ||
| Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| elind.1 |
|
| elind.2 |
|
| Ref | Expression |
|---|---|
| elind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elind.1 |
. 2
| |
| 2 | elind.2 |
. 2
| |
| 3 | elin 3364 |
. 2
| |
| 4 | 1, 2, 3 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 |
| This theorem is referenced by: elfir 7101 infpwfidom 7337 nninfdclemcl 12934 nninfdclemp1 12936 strslfv2d 12990 insubm 13432 2idl0 14389 2idl1 14390 baspartn 14637 bastg 14648 isopn3 14712 restbasg 14755 lmss 14833 metrest 15093 tgioo 15141 dvmulxxbr 15289 elply2 15322 pilem3 15370 2sqlem7 15713 |
| Copyright terms: Public domain | W3C validator |