| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elind | Unicode version | ||
| Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| elind.1 |
|
| elind.2 |
|
| Ref | Expression |
|---|---|
| elind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elind.1 |
. 2
| |
| 2 | elind.2 |
. 2
| |
| 3 | elin 3387 |
. 2
| |
| 4 | 1, 2, 3 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 |
| This theorem is referenced by: elfir 7140 infpwfidom 7376 nninfdclemcl 13019 nninfdclemp1 13021 strslfv2d 13075 bassetsnn 13089 insubm 13518 2idl0 14476 2idl1 14477 baspartn 14724 bastg 14735 isopn3 14799 restbasg 14842 lmss 14920 metrest 15180 tgioo 15228 dvmulxxbr 15376 elply2 15409 pilem3 15457 2sqlem7 15800 |
| Copyright terms: Public domain | W3C validator |