ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elind Unicode version

Theorem elind 3358
Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
elind.1  |-  ( ph  ->  X  e.  A )
elind.2  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
elind  |-  ( ph  ->  X  e.  ( A  i^i  B ) )

Proof of Theorem elind
StepHypRef Expression
1 elind.1 . 2  |-  ( ph  ->  X  e.  A )
2 elind.2 . 2  |-  ( ph  ->  X  e.  B )
3 elin 3356 . 2  |-  ( X  e.  ( A  i^i  B )  <->  ( X  e.  A  /\  X  e.  B ) )
41, 2, 3sylanbrc 417 1  |-  ( ph  ->  X  e.  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176    i^i cin 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172
This theorem is referenced by:  elfir  7077  infpwfidom  7308  nninfdclemcl  12852  nninfdclemp1  12854  strslfv2d  12908  insubm  13350  2idl0  14307  2idl1  14308  baspartn  14555  bastg  14566  isopn3  14630  restbasg  14673  lmss  14751  metrest  15011  tgioo  15059  dvmulxxbr  15207  elply2  15240  pilem3  15288  2sqlem7  15631
  Copyright terms: Public domain W3C validator