| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elind | Unicode version | ||
| Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| elind.1 |
|
| elind.2 |
|
| Ref | Expression |
|---|---|
| elind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elind.1 |
. 2
| |
| 2 | elind.2 |
. 2
| |
| 3 | elin 3346 |
. 2
| |
| 4 | 1, 2, 3 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 |
| This theorem is referenced by: elfir 7039 infpwfidom 7265 nninfdclemcl 12665 nninfdclemp1 12667 strslfv2d 12721 insubm 13117 2idl0 14068 2idl1 14069 baspartn 14286 bastg 14297 isopn3 14361 restbasg 14404 lmss 14482 metrest 14742 tgioo 14790 dvmulxxbr 14938 elply2 14971 pilem3 15019 2sqlem7 15362 |
| Copyright terms: Public domain | W3C validator |