| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elin | Unicode version | ||
| Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| elin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | elex 2774 |
. . 3
| |
| 3 | 2 | adantl 277 |
. 2
|
| 4 | eleq1 2259 |
. . . 4
| |
| 5 | eleq1 2259 |
. . . 4
| |
| 6 | 4, 5 | anbi12d 473 |
. . 3
|
| 7 | df-in 3163 |
. . 3
| |
| 8 | 6, 7 | elab2g 2911 |
. 2
|
| 9 | 1, 3, 8 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 |
| This theorem is referenced by: elini 3348 elind 3349 elinel1 3350 elinel2 3351 elin2 3352 elin3 3355 incom 3356 ineqri 3357 ineq1 3358 inass 3374 inss1 3384 ssin 3386 ssrin 3389 dfss4st 3397 inssdif 3400 difin 3401 unssin 3403 inssun 3404 invdif 3406 indif 3407 indi 3411 undi 3412 difundi 3416 difindiss 3418 indifdir 3420 difin2 3426 inrab2 3437 inelcm 3512 inssdif0im 3519 uniin 3860 intun 3906 intpr 3907 elrint 3915 iunin2 3981 iinin2m 3986 elriin 3988 disjnim 4025 disjiun 4029 brin 4086 trin 4142 inex1 4168 inuni 4189 bnd2 4207 ordpwsucss 4604 ordpwsucexmid 4607 peano5 4635 inopab 4799 inxp 4801 dmin 4875 opelres 4952 intasym 5055 asymref 5056 dminss 5085 imainss 5086 inimasn 5088 ssrnres 5113 cnvresima 5160 dfco2a 5171 funinsn 5308 imainlem 5340 imain 5341 2elresin 5370 nfvres 5593 respreima 5691 isoini 5866 offval 6145 tfrlem5 6374 mapval2 6739 ixpin 6784 ssenen 6914 infidc 7002 fnfi 7004 peano5nnnn 7962 peano5nni 8996 ixxdisj 9981 icodisj 10070 fzdisj 10130 uzdisj 10171 nn0disj 10216 fzouzdisj 10259 isumss 11559 fsumsplit 11575 sumsplitdc 11600 fsum2dlemstep 11602 fprod2dlemstep 11790 bitsmod 12124 bitsinv1 12130 4sqlem12 12582 nninfdclemcl 12676 nninfdclemp1 12678 insubm 13143 isrhm 13740 subsubrng2 13797 subsubrg2 13828 2idlelb 14087 isbasis2g 14307 tgval2 14313 tgcl 14326 epttop 14352 ssntr 14384 ntreq0 14394 cnptopresti 14500 cnptoprest 14501 cnptoprest2 14502 lmss 14508 txcnp 14533 txcnmpt 14535 bldisj 14663 blininf 14686 blres 14696 metrest 14768 pilem1 15041 bj-charfundcALT 15481 bj-charfunr 15482 bdinex1 15571 bj-indind 15604 |
| Copyright terms: Public domain | W3C validator |