![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elin | Unicode version |
Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
elin |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | elex 2771 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | adantl 277 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | eleq1 2256 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | eleq1 2256 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | anbi12d 473 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | df-in 3159 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | elab2g 2907 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 1, 3, 8 | pm5.21nii 705 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 |
This theorem is referenced by: elini 3343 elind 3344 elinel1 3345 elinel2 3346 elin2 3347 elin3 3350 incom 3351 ineqri 3352 ineq1 3353 inass 3369 inss1 3379 ssin 3381 ssrin 3384 dfss4st 3392 inssdif 3395 difin 3396 unssin 3398 inssun 3399 invdif 3401 indif 3402 indi 3406 undi 3407 difundi 3411 difindiss 3413 indifdir 3415 difin2 3421 inrab2 3432 inelcm 3507 inssdif0im 3514 uniin 3855 intun 3901 intpr 3902 elrint 3910 iunin2 3976 iinin2m 3981 elriin 3983 disjnim 4020 disjiun 4024 brin 4081 trin 4137 inex1 4163 inuni 4184 bnd2 4202 ordpwsucss 4599 ordpwsucexmid 4602 peano5 4630 inopab 4794 inxp 4796 dmin 4870 opelres 4947 intasym 5050 asymref 5051 dminss 5080 imainss 5081 inimasn 5083 ssrnres 5108 cnvresima 5155 dfco2a 5166 funinsn 5303 imainlem 5335 imain 5336 2elresin 5365 nfvres 5588 respreima 5686 isoini 5861 offval 6138 tfrlem5 6367 mapval2 6732 ixpin 6777 ssenen 6907 infidc 6993 fnfi 6995 peano5nnnn 7952 peano5nni 8985 ixxdisj 9969 icodisj 10058 fzdisj 10118 uzdisj 10159 nn0disj 10204 fzouzdisj 10247 isumss 11534 fsumsplit 11550 sumsplitdc 11575 fsum2dlemstep 11577 fprod2dlemstep 11765 4sqlem12 12540 nninfdclemcl 12605 nninfdclemp1 12607 insubm 13057 isrhm 13654 subsubrng2 13711 subsubrg2 13742 2idlelb 14001 isbasis2g 14213 tgval2 14219 tgcl 14232 epttop 14258 ssntr 14290 ntreq0 14300 cnptopresti 14406 cnptoprest 14407 cnptoprest2 14408 lmss 14414 txcnp 14439 txcnmpt 14441 bldisj 14569 blininf 14592 blres 14602 metrest 14674 pilem1 14914 bj-charfundcALT 15301 bj-charfunr 15302 bdinex1 15391 bj-indind 15424 |
Copyright terms: Public domain | W3C validator |