| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elin | Unicode version | ||
| Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| elin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. 2
| |
| 2 | elex 2783 |
. . 3
| |
| 3 | 2 | adantl 277 |
. 2
|
| 4 | eleq1 2268 |
. . . 4
| |
| 5 | eleq1 2268 |
. . . 4
| |
| 6 | 4, 5 | anbi12d 473 |
. . 3
|
| 7 | df-in 3172 |
. . 3
| |
| 8 | 6, 7 | elab2g 2920 |
. 2
|
| 9 | 1, 3, 8 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 |
| This theorem is referenced by: elini 3357 elind 3358 elinel1 3359 elinel2 3360 elin2 3361 elin3 3364 incom 3365 ineqri 3366 ineq1 3367 inass 3383 inss1 3393 ssin 3395 ssrin 3398 dfss4st 3406 inssdif 3409 difin 3410 unssin 3412 inssun 3413 invdif 3415 indif 3416 indi 3420 undi 3421 difundi 3425 difindiss 3427 indifdir 3429 difin2 3435 inrab2 3446 inelcm 3521 inssdif0im 3528 uniin 3870 intun 3916 intpr 3917 elrint 3925 iunin2 3991 iinin2m 3996 elriin 3998 disjnim 4035 disjiun 4040 brin 4097 trin 4153 inex1 4179 inuni 4200 bnd2 4218 ordpwsucss 4616 ordpwsucexmid 4619 peano5 4647 inopab 4811 inxp 4813 dmin 4887 opelres 4965 intasym 5068 asymref 5069 dminss 5098 imainss 5099 inimasn 5101 ssrnres 5126 cnvresima 5173 dfco2a 5184 funinsn 5324 imainlem 5356 imain 5357 2elresin 5388 nfvres 5612 respreima 5710 isoini 5889 offval 6168 tfrlem5 6402 mapval2 6767 ixpin 6812 ssenen 6950 infidc 7038 fnfi 7040 peano5nnnn 8007 peano5nni 9041 ixxdisj 10027 icodisj 10116 fzdisj 10176 uzdisj 10217 nn0disj 10262 fzouzdisj 10306 isumss 11735 fsumsplit 11751 sumsplitdc 11776 fsum2dlemstep 11778 fprod2dlemstep 11966 bitsmod 12300 bitsinv1 12306 4sqlem12 12758 nninfdclemcl 12852 nninfdclemp1 12854 insubm 13350 isrhm 13953 subsubrng2 14010 subsubrg2 14041 2idlelb 14300 isbasis2g 14550 tgval2 14556 tgcl 14569 epttop 14595 ssntr 14627 ntreq0 14637 cnptopresti 14743 cnptoprest 14744 cnptoprest2 14745 lmss 14751 txcnp 14776 txcnmpt 14778 bldisj 14906 blininf 14929 blres 14939 metrest 15011 pilem1 15284 bj-charfundcALT 15782 bj-charfunr 15783 bdinex1 15872 bj-indind 15905 |
| Copyright terms: Public domain | W3C validator |