| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elin | Unicode version | ||
| Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| elin | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2774 | 
. 2
 | |
| 2 | elex 2774 | 
. . 3
 | |
| 3 | 2 | adantl 277 | 
. 2
 | 
| 4 | eleq1 2259 | 
. . . 4
 | |
| 5 | eleq1 2259 | 
. . . 4
 | |
| 6 | 4, 5 | anbi12d 473 | 
. . 3
 | 
| 7 | df-in 3163 | 
. . 3
 | |
| 8 | 6, 7 | elab2g 2911 | 
. 2
 | 
| 9 | 1, 3, 8 | pm5.21nii 705 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 | 
| This theorem is referenced by: elini 3347 elind 3348 elinel1 3349 elinel2 3350 elin2 3351 elin3 3354 incom 3355 ineqri 3356 ineq1 3357 inass 3373 inss1 3383 ssin 3385 ssrin 3388 dfss4st 3396 inssdif 3399 difin 3400 unssin 3402 inssun 3403 invdif 3405 indif 3406 indi 3410 undi 3411 difundi 3415 difindiss 3417 indifdir 3419 difin2 3425 inrab2 3436 inelcm 3511 inssdif0im 3518 uniin 3859 intun 3905 intpr 3906 elrint 3914 iunin2 3980 iinin2m 3985 elriin 3987 disjnim 4024 disjiun 4028 brin 4085 trin 4141 inex1 4167 inuni 4188 bnd2 4206 ordpwsucss 4603 ordpwsucexmid 4606 peano5 4634 inopab 4798 inxp 4800 dmin 4874 opelres 4951 intasym 5054 asymref 5055 dminss 5084 imainss 5085 inimasn 5087 ssrnres 5112 cnvresima 5159 dfco2a 5170 funinsn 5307 imainlem 5339 imain 5340 2elresin 5369 nfvres 5592 respreima 5690 isoini 5865 offval 6143 tfrlem5 6372 mapval2 6737 ixpin 6782 ssenen 6912 infidc 7000 fnfi 7002 peano5nnnn 7959 peano5nni 8993 ixxdisj 9978 icodisj 10067 fzdisj 10127 uzdisj 10168 nn0disj 10213 fzouzdisj 10256 isumss 11556 fsumsplit 11572 sumsplitdc 11597 fsum2dlemstep 11599 fprod2dlemstep 11787 4sqlem12 12571 nninfdclemcl 12665 nninfdclemp1 12667 insubm 13117 isrhm 13714 subsubrng2 13771 subsubrg2 13802 2idlelb 14061 isbasis2g 14281 tgval2 14287 tgcl 14300 epttop 14326 ssntr 14358 ntreq0 14368 cnptopresti 14474 cnptoprest 14475 cnptoprest2 14476 lmss 14482 txcnp 14507 txcnmpt 14509 bldisj 14637 blininf 14660 blres 14670 metrest 14742 pilem1 15015 bj-charfundcALT 15455 bj-charfunr 15456 bdinex1 15545 bj-indind 15578 | 
| Copyright terms: Public domain | W3C validator |