| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elin | Unicode version | ||
| Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| elin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. 2
| |
| 2 | elex 2811 |
. . 3
| |
| 3 | 2 | adantl 277 |
. 2
|
| 4 | eleq1 2292 |
. . . 4
| |
| 5 | eleq1 2292 |
. . . 4
| |
| 6 | 4, 5 | anbi12d 473 |
. . 3
|
| 7 | df-in 3203 |
. . 3
| |
| 8 | 6, 7 | elab2g 2950 |
. 2
|
| 9 | 1, 3, 8 | pm5.21nii 709 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 |
| This theorem is referenced by: elini 3388 elind 3389 elinel1 3390 elinel2 3391 elin2 3392 elin3 3395 incom 3396 ineqri 3397 ineq1 3398 inass 3414 inss1 3424 ssin 3426 ssrin 3429 dfss4st 3437 inssdif 3440 difin 3441 unssin 3443 inssun 3444 invdif 3446 indif 3447 indi 3451 undi 3452 difundi 3456 difindiss 3458 indifdir 3460 difin2 3466 inrab2 3477 inelcm 3552 inssdif0im 3559 uniin 3908 intun 3954 intpr 3955 elrint 3963 iunin2 4029 iinin2m 4034 elriin 4036 disjnim 4073 disjiun 4078 brin 4136 trin 4192 inex1 4218 inuni 4239 bnd2 4257 ordpwsucss 4659 ordpwsucexmid 4662 peano5 4690 inopab 4854 inxp 4856 dmin 4931 opelres 5010 intasym 5113 asymref 5114 dminss 5143 imainss 5144 inimasn 5146 ssrnres 5171 cnvresima 5218 dfco2a 5229 funinsn 5370 imainlem 5402 imain 5403 2elresin 5434 nfvres 5663 respreima 5763 isoini 5942 offval 6226 tfrlem5 6460 mapval2 6825 ixpin 6870 ssenen 7012 infidc 7101 fnfi 7103 peano5nnnn 8079 peano5nni 9113 ixxdisj 10099 icodisj 10188 fzdisj 10248 uzdisj 10289 nn0disj 10334 fzouzdisj 10378 isumss 11902 fsumsplit 11918 sumsplitdc 11943 fsum2dlemstep 11945 fprod2dlemstep 12133 bitsmod 12467 bitsinv1 12473 4sqlem12 12925 nninfdclemcl 13019 nninfdclemp1 13021 insubm 13518 isrhm 14122 subsubrng2 14179 subsubrg2 14210 2idlelb 14469 isbasis2g 14719 tgval2 14725 tgcl 14738 epttop 14764 ssntr 14796 ntreq0 14806 cnptopresti 14912 cnptoprest 14913 cnptoprest2 14914 lmss 14920 txcnp 14945 txcnmpt 14947 bldisj 15075 blininf 15098 blres 15108 metrest 15180 pilem1 15453 wlk1walkdom 16070 bj-charfundcALT 16172 bj-charfunr 16173 bdinex1 16262 bj-indind 16295 |
| Copyright terms: Public domain | W3C validator |