| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elin | Unicode version | ||
| Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| elin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | elex 2774 |
. . 3
| |
| 3 | 2 | adantl 277 |
. 2
|
| 4 | eleq1 2259 |
. . . 4
| |
| 5 | eleq1 2259 |
. . . 4
| |
| 6 | 4, 5 | anbi12d 473 |
. . 3
|
| 7 | df-in 3163 |
. . 3
| |
| 8 | 6, 7 | elab2g 2911 |
. 2
|
| 9 | 1, 3, 8 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 |
| This theorem is referenced by: elini 3348 elind 3349 elinel1 3350 elinel2 3351 elin2 3352 elin3 3355 incom 3356 ineqri 3357 ineq1 3358 inass 3374 inss1 3384 ssin 3386 ssrin 3389 dfss4st 3397 inssdif 3400 difin 3401 unssin 3403 inssun 3404 invdif 3406 indif 3407 indi 3411 undi 3412 difundi 3416 difindiss 3418 indifdir 3420 difin2 3426 inrab2 3437 inelcm 3512 inssdif0im 3519 uniin 3860 intun 3906 intpr 3907 elrint 3915 iunin2 3981 iinin2m 3986 elriin 3988 disjnim 4025 disjiun 4029 brin 4086 trin 4142 inex1 4168 inuni 4189 bnd2 4207 ordpwsucss 4604 ordpwsucexmid 4607 peano5 4635 inopab 4799 inxp 4801 dmin 4875 opelres 4952 intasym 5055 asymref 5056 dminss 5085 imainss 5086 inimasn 5088 ssrnres 5113 cnvresima 5160 dfco2a 5171 funinsn 5308 imainlem 5340 imain 5341 2elresin 5372 nfvres 5595 respreima 5693 isoini 5868 offval 6147 tfrlem5 6381 mapval2 6746 ixpin 6791 ssenen 6921 infidc 7009 fnfi 7011 peano5nnnn 7976 peano5nni 9010 ixxdisj 9995 icodisj 10084 fzdisj 10144 uzdisj 10185 nn0disj 10230 fzouzdisj 10273 isumss 11573 fsumsplit 11589 sumsplitdc 11614 fsum2dlemstep 11616 fprod2dlemstep 11804 bitsmod 12138 bitsinv1 12144 4sqlem12 12596 nninfdclemcl 12690 nninfdclemp1 12692 insubm 13187 isrhm 13790 subsubrng2 13847 subsubrg2 13878 2idlelb 14137 isbasis2g 14365 tgval2 14371 tgcl 14384 epttop 14410 ssntr 14442 ntreq0 14452 cnptopresti 14558 cnptoprest 14559 cnptoprest2 14560 lmss 14566 txcnp 14591 txcnmpt 14593 bldisj 14721 blininf 14744 blres 14754 metrest 14826 pilem1 15099 bj-charfundcALT 15539 bj-charfunr 15540 bdinex1 15629 bj-indind 15662 |
| Copyright terms: Public domain | W3C validator |