Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elin | Unicode version |
Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
elin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 | |
2 | elex 2737 | . . 3 | |
3 | 2 | adantl 275 | . 2 |
4 | eleq1 2229 | . . . 4 | |
5 | eleq1 2229 | . . . 4 | |
6 | 4, 5 | anbi12d 465 | . . 3 |
7 | df-in 3122 | . . 3 | |
8 | 6, 7 | elab2g 2873 | . 2 |
9 | 1, 3, 8 | pm5.21nii 694 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 cin 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 |
This theorem is referenced by: elini 3306 elind 3307 elinel1 3308 elinel2 3309 elin2 3310 elin3 3313 incom 3314 ineqri 3315 ineq1 3316 inass 3332 inss1 3342 ssin 3344 ssrin 3347 dfss4st 3355 inssdif 3358 difin 3359 unssin 3361 inssun 3362 invdif 3364 indif 3365 indi 3369 undi 3370 difundi 3374 difindiss 3376 indifdir 3378 difin2 3384 inrab2 3395 inelcm 3469 inssdif0im 3476 uniin 3809 intun 3855 intpr 3856 elrint 3864 iunin2 3929 iinin2m 3934 elriin 3936 disjnim 3973 disjiun 3977 brin 4034 trin 4090 inex1 4116 inuni 4134 bnd2 4152 ordpwsucss 4544 ordpwsucexmid 4547 peano5 4575 inopab 4736 inxp 4738 dmin 4812 opelres 4889 intasym 4988 asymref 4989 dminss 5018 imainss 5019 inimasn 5021 ssrnres 5046 cnvresima 5093 dfco2a 5104 funinsn 5237 imainlem 5269 imain 5270 2elresin 5299 nfvres 5519 respreima 5613 isoini 5786 offval 6057 tfrlem5 6282 mapval2 6644 ixpin 6689 ssenen 6817 fnfi 6902 peano5nnnn 7833 peano5nni 8860 ixxdisj 9839 icodisj 9928 fzdisj 9987 uzdisj 10028 nn0disj 10073 fzouzdisj 10115 isumss 11332 fsumsplit 11348 sumsplitdc 11373 fsum2dlemstep 11375 fprod2dlemstep 11563 nninfdclemcl 12381 nninfdclemp1 12383 isbasis2g 12693 tgval2 12701 tgcl 12714 epttop 12740 ssntr 12772 ntreq0 12782 cnptopresti 12888 cnptoprest 12889 cnptoprest2 12890 lmss 12896 txcnp 12921 txcnmpt 12923 bldisj 13051 blininf 13074 blres 13084 metrest 13156 pilem1 13350 bj-charfundcALT 13701 bj-charfunr 13702 bdinex1 13791 bj-indind 13824 |
Copyright terms: Public domain | W3C validator |