![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir2an | Unicode version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbir2an.1 |
![]() ![]() |
mpbir2an.2 |
![]() ![]() |
mpbiran2an.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpbir2an |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2an.2 |
. 2
![]() ![]() | |
2 | mpbir2an.1 |
. . 3
![]() ![]() | |
3 | mpbiran2an.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpbiran 940 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpbir 146 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3pm3.2i 1175 euequ1 2121 eqssi 3171 elini 3319 dtruarb 4191 opnzi 4235 so0 4326 we0 4361 ord0 4391 ordon 4485 onsucelsucexmidlem1 4527 regexmidlemm 4531 ordpwsucexmid 4569 reg3exmidlemwe 4578 ordom 4606 funi 5248 funcnvsn 5261 funinsn 5265 fnresi 5333 fn0 5335 f0 5406 fconst 5411 f10 5495 f1o0 5498 f1oi 5499 f1osn 5501 isoid 5810 iso0 5817 acexmidlem2 5871 fo1st 6157 fo2nd 6158 iordsmo 6297 tfrlem7 6317 tfrexlem 6334 mapsnf1o2 6695 1domsn 6818 inresflem 7058 0ct 7105 infnninf 7121 infnninfOLD 7122 exmidonfinlem 7191 exmidaclem 7206 pw1on 7224 sucpw1nel3 7231 1pi 7313 prarloclemcalc 7500 ltsopr 7594 ltsosr 7762 cnm 7830 axicn 7861 axaddf 7866 axmulf 7867 nnindnn 7891 ltso 8034 negiso 8911 nnind 8934 0z 9263 dfuzi 9362 cnref1o 9649 elrpii 9655 xrltso 9795 0e0icopnf 9978 0e0iccpnf 9979 fz0to4untppr 10123 fldiv4p1lem1div2 10304 expcl2lemap 10531 expclzaplem 10543 expge0 10555 expge1 10556 xrnegiso 11269 fclim 11301 eff2 11687 reeff1 11707 ef01bndlem 11763 sin01bnd 11764 cos01bnd 11765 sin01gt0 11768 egt2lt3 11786 halfleoddlt 11898 2prm 12126 3prm 12127 1arith 12364 setsslnid 12513 xpsff1o 12767 isabli 13101 mgpf 13192 zringnzr 13462 fntopon 13494 istpsi 13509 ismeti 13816 tgqioo 14017 addcncntoplem 14021 divcnap 14025 abscncf 14042 recncf 14043 imcncf 14044 cjcncf 14045 dveflem 14157 reeff1o 14164 reefiso 14168 ioocosf1o 14245 lgslem2 14372 lgsfcl2 14377 lgsne0 14409 ex-fl 14447 bj-indint 14653 bj-omord 14682 012of 14715 2o01f 14716 0nninf 14723 peano4nninf 14725 taupi 14790 |
Copyright terms: Public domain | W3C validator |