![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir2an | Unicode version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbir2an.1 |
![]() ![]() |
mpbir2an.2 |
![]() ![]() |
mpbiran2an.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpbir2an |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2an.2 |
. 2
![]() ![]() | |
2 | mpbir2an.1 |
. . 3
![]() ![]() | |
3 | mpbiran2an.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpbiran 942 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpbir 146 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3pm3.2i 1177 euequ1 2137 eqssi 3196 elini 3344 dtruarb 4221 opnzi 4265 so0 4358 we0 4393 ord0 4423 ordon 4519 onsucelsucexmidlem1 4561 regexmidlemm 4565 ordpwsucexmid 4603 reg3exmidlemwe 4612 ordom 4640 funi 5287 funcnvsn 5300 funinsn 5304 fnresi 5372 fn0 5374 f0 5445 fconst 5450 f10 5535 f1o0 5538 f1oi 5539 f1osn 5541 isoid 5854 iso0 5861 acexmidlem2 5916 fo1st 6212 fo2nd 6213 iordsmo 6352 tfrlem7 6372 tfrexlem 6389 mapsnf1o2 6752 1domsn 6875 inresflem 7121 0ct 7168 infnninf 7185 infnninfOLD 7186 exmidonfinlem 7255 exmidaclem 7270 pw1on 7288 sucpw1nel3 7295 1pi 7377 prarloclemcalc 7564 ltsopr 7658 ltsosr 7826 cnm 7894 axicn 7925 axaddf 7930 axmulf 7931 nnindnn 7955 mpomulf 8011 ltso 8099 negiso 8976 nnind 9000 0z 9331 dfuzi 9430 cnref1o 9719 elrpii 9725 xrltso 9865 0e0icopnf 10048 0e0iccpnf 10049 fz0to4untppr 10193 fldiv4p1lem1div2 10377 expcl2lemap 10625 expclzaplem 10637 expge0 10649 expge1 10650 xrnegiso 11408 fclim 11440 eff2 11826 reeff1 11846 ef01bndlem 11902 sin01bnd 11903 cos01bnd 11904 sin01gt0 11908 egt2lt3 11926 halfleoddlt 12038 2prm 12268 3prm 12269 1arith 12508 setsslnid 12673 xpsff1o 12935 isabli 13373 rngmgpf 13436 mgpf 13510 zringnzr 14101 fntopon 14203 istpsi 14218 ismeti 14525 cnfldms 14715 tgqioo 14734 addcncntoplem 14740 divcnap 14744 abscncf 14764 recncf 14765 imcncf 14766 cjcncf 14767 maxcncf 14794 mincncf 14795 dveflem 14905 reeff1o 14949 reefiso 14953 ioocosf1o 15030 lgslem2 15158 lgsfcl2 15163 lgsne0 15195 2lgslem1b 15246 ex-fl 15287 bj-indint 15493 bj-omord 15522 012of 15556 2o01f 15557 0nninf 15564 peano4nninf 15566 taupi 15633 |
Copyright terms: Public domain | W3C validator |