| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir2an | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir2an.1 |
|
| mpbir2an.2 |
|
| mpbiran2an.1 |
|
| Ref | Expression |
|---|---|
| mpbir2an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir2an.2 |
. 2
| |
| 2 | mpbir2an.1 |
. . 3
| |
| 3 | mpbiran2an.1 |
. . 3
| |
| 4 | 2, 3 | mpbiran 942 |
. 2
|
| 5 | 1, 4 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3pm3.2i 1177 euequ1 2148 eqssi 3208 elini 3356 dtruarb 4234 opnzi 4278 so0 4372 we0 4407 ord0 4437 ordon 4533 onsucelsucexmidlem1 4575 regexmidlemm 4579 ordpwsucexmid 4617 reg3exmidlemwe 4626 ordom 4654 funi 5302 funcnvsn 5318 funinsn 5322 fnresi 5392 fn0 5394 f0 5465 fconst 5470 f10 5555 f1o0 5558 f1oi 5559 f1osn 5561 funopsn 5761 isoid 5878 iso0 5885 acexmidlem2 5940 fo1st 6242 fo2nd 6243 iordsmo 6382 tfrlem7 6402 tfrexlem 6419 mapsnf1o2 6782 1domsn 6913 inresflem 7161 0ct 7208 infnninf 7225 infnninfOLD 7226 exmidonfinlem 7300 exmidaclem 7319 pw1on 7337 sucpw1nel3 7344 1pi 7427 prarloclemcalc 7614 ltsopr 7708 ltsosr 7876 cnm 7944 axicn 7975 axaddf 7980 axmulf 7981 nnindnn 8005 mpomulf 8061 ltso 8149 negiso 9027 nnind 9051 0z 9382 dfuzi 9482 cnref1o 9771 elrpii 9777 xrltso 9917 0e0icopnf 10100 0e0iccpnf 10101 fz0to4untppr 10245 fldiv4p1lem1div2 10446 expcl2lemap 10694 expclzaplem 10706 expge0 10718 expge1 10719 xrnegiso 11544 fclim 11576 eff2 11962 reeff1 11982 ef01bndlem 12038 sin01bnd 12039 cos01bnd 12040 sin01gt0 12044 egt2lt3 12062 halfleoddlt 12176 2prm 12420 3prm 12421 1arith 12661 setsslnid 12855 xpsff1o 13152 isabli 13607 rngmgpf 13670 mgpf 13744 zringnzr 14335 fntopon 14467 istpsi 14482 ismeti 14789 cnfldms 14979 tgqioo 14998 addcncntoplem 15004 divcnap 15008 abscncf 15028 recncf 15029 imcncf 15030 cjcncf 15031 maxcncf 15058 mincncf 15059 dveflem 15169 reeff1o 15216 reefiso 15220 ioocosf1o 15297 lgslem2 15449 lgsfcl2 15454 lgsne0 15486 2lgslem1b 15537 ex-fl 15623 bj-indint 15829 bj-omord 15858 012of 15892 2o01f 15893 0nninf 15903 peano4nninf 15905 taupi 15974 |
| Copyright terms: Public domain | W3C validator |