| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir2an | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir2an.1 |
|
| mpbir2an.2 |
|
| mpbiran2an.1 |
|
| Ref | Expression |
|---|---|
| mpbir2an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir2an.2 |
. 2
| |
| 2 | mpbir2an.1 |
. . 3
| |
| 3 | mpbiran2an.1 |
. . 3
| |
| 4 | 2, 3 | mpbiran 943 |
. 2
|
| 5 | 1, 4 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3pm3.2i 1178 euequ1 2150 eqssi 3213 elini 3361 dtruarb 4243 opnzi 4287 so0 4381 we0 4416 ord0 4446 ordon 4542 onsucelsucexmidlem1 4584 regexmidlemm 4588 ordpwsucexmid 4626 reg3exmidlemwe 4635 ordom 4663 funi 5312 funcnvsn 5328 funinsn 5332 fnresi 5403 fn0 5405 f0 5478 fconst 5483 f10 5568 f1o0 5572 f1oi 5573 f1osn 5575 funopsn 5775 isoid 5892 iso0 5899 acexmidlem2 5954 fo1st 6256 fo2nd 6257 iordsmo 6396 tfrlem7 6416 tfrexlem 6433 mapsnf1o2 6796 1domsn 6929 inresflem 7177 0ct 7224 infnninf 7241 infnninfOLD 7242 exmidonfinlem 7317 exmidaclem 7336 pw1on 7357 sucpw1nel3 7364 1pi 7448 prarloclemcalc 7635 ltsopr 7729 ltsosr 7897 cnm 7965 axicn 7996 axaddf 8001 axmulf 8002 nnindnn 8026 mpomulf 8082 ltso 8170 negiso 9048 nnind 9072 0z 9403 dfuzi 9503 cnref1o 9792 elrpii 9798 xrltso 9938 0e0icopnf 10121 0e0iccpnf 10122 fz0to4untppr 10266 fldiv4p1lem1div2 10470 expcl2lemap 10718 expclzaplem 10730 expge0 10742 expge1 10743 xrnegiso 11648 fclim 11680 eff2 12066 reeff1 12086 ef01bndlem 12142 sin01bnd 12143 cos01bnd 12144 sin01gt0 12148 egt2lt3 12166 halfleoddlt 12280 2prm 12524 3prm 12525 1arith 12765 setsslnid 12959 xpsff1o 13256 isabli 13711 rngmgpf 13774 mgpf 13848 zringnzr 14439 fntopon 14571 istpsi 14586 ismeti 14893 cnfldms 15083 tgqioo 15102 addcncntoplem 15108 divcnap 15112 abscncf 15132 recncf 15133 imcncf 15134 cjcncf 15135 maxcncf 15162 mincncf 15163 dveflem 15273 reeff1o 15320 reefiso 15324 ioocosf1o 15401 lgslem2 15553 lgsfcl2 15558 lgsne0 15590 2lgslem1b 15641 umgrbien 15781 ex-fl 15800 bj-indint 16005 bj-omord 16034 012of 16069 2o01f 16070 0nninf 16082 peano4nninf 16084 taupi 16153 |
| Copyright terms: Public domain | W3C validator |