![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir2an | Unicode version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbir2an.1 |
![]() ![]() |
mpbir2an.2 |
![]() ![]() |
mpbiran2an.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpbir2an |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2an.2 |
. 2
![]() ![]() | |
2 | mpbir2an.1 |
. . 3
![]() ![]() | |
3 | mpbiran2an.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpbiran 886 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpbir 144 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: 3pm3.2i 1121 euequ1 2043 eqssi 3041 elini 3184 dtruarb 4026 opnzi 4062 so0 4153 we0 4188 ord0 4218 ordon 4303 onsucelsucexmidlem1 4344 regexmidlemm 4348 ordpwsucexmid 4386 reg3exmidlemwe 4394 ordom 4421 funi 5046 funcnvsn 5059 funinsn 5063 fnresi 5131 fn0 5133 f0 5201 fconst 5206 f10 5287 f1o0 5290 f1oi 5291 f1osn 5293 isoid 5589 iso0 5596 acexmidlem2 5649 fo1st 5928 fo2nd 5929 iordsmo 6062 tfrlem7 6082 tfrexlem 6099 mapsnf1o2 6451 1domsn 6533 inresflem 6750 infnninf 6803 1pi 6872 prarloclemcalc 7059 ltsopr 7153 ltsosr 7308 axicn 7398 nnindnn 7426 ltso 7561 negiso 8414 nnind 8436 0z 8759 dfuzi 8854 cnref1o 9131 elrpii 9135 xrltso 9264 0e0icopnf 9395 0e0iccpnf 9396 fldiv4p1lem1div2 9708 expcl2lemap 9963 expclzaplem 9975 expge0 9987 expge1 9988 fclim 10678 eff2 10966 reeff1 10987 ef01bndlem 11043 sin01bnd 11044 cos01bnd 11045 sin01gt0 11048 egt2lt3 11063 halfleoddlt 11168 2prm 11383 3prm 11384 setsnidn 11540 fntopon 11575 abscncf 11596 recncf 11597 imcncf 11598 cjcncf 11599 ex-fl 11607 bj-indint 11781 bj-omord 11810 0nninf 11848 peano4nninf 11851 |
Copyright terms: Public domain | W3C validator |