| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir2an | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir2an.1 |
|
| mpbir2an.2 |
|
| mpbiran2an.1 |
|
| Ref | Expression |
|---|---|
| mpbir2an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir2an.2 |
. 2
| |
| 2 | mpbir2an.1 |
. . 3
| |
| 3 | mpbiran2an.1 |
. . 3
| |
| 4 | 2, 3 | mpbiran 946 |
. 2
|
| 5 | 1, 4 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3pm3.2i 1199 euequ1 2173 eqssi 3240 elini 3388 dtruarb 4274 opnzi 4320 so0 4416 we0 4451 ord0 4481 ordon 4577 onsucelsucexmidlem1 4619 regexmidlemm 4623 ordpwsucexmid 4661 reg3exmidlemwe 4670 ordom 4698 funi 5349 funcnvsn 5365 funinsn 5369 fnresi 5440 fn0 5442 f0 5515 fconst 5520 f10 5605 f1o0 5609 f1oi 5610 f1osn 5612 funopsn 5816 isoid 5933 iso0 5940 acexmidlem2 5997 fo1st 6301 fo2nd 6302 iordsmo 6441 tfrlem7 6461 tfrexlem 6478 mapsnf1o2 6841 1domsn 6974 inresflem 7223 0ct 7270 infnninf 7287 infnninfOLD 7288 exmidonfinlem 7367 exmidaclem 7386 pw1on 7407 sucpw1nel3 7414 1pi 7498 prarloclemcalc 7685 ltsopr 7779 ltsosr 7947 cnm 8015 axicn 8046 axaddf 8051 axmulf 8052 nnindnn 8076 mpomulf 8132 ltso 8220 negiso 9098 nnind 9122 0z 9453 dfuzi 9553 cnref1o 9842 elrpii 9848 xrltso 9988 0e0icopnf 10171 0e0iccpnf 10172 fz0to4untppr 10316 fldiv4p1lem1div2 10520 expcl2lemap 10768 expclzaplem 10780 expge0 10792 expge1 10793 xrnegiso 11768 fclim 11800 eff2 12186 reeff1 12206 ef01bndlem 12262 sin01bnd 12263 cos01bnd 12264 sin01gt0 12268 egt2lt3 12286 halfleoddlt 12400 2prm 12644 3prm 12645 1arith 12885 setsslnid 13079 xpsff1o 13377 isabli 13832 rngmgpf 13895 mgpf 13969 zringnzr 14560 fntopon 14692 istpsi 14707 ismeti 15014 cnfldms 15204 tgqioo 15223 addcncntoplem 15229 divcnap 15233 abscncf 15253 recncf 15254 imcncf 15255 cjcncf 15256 maxcncf 15283 mincncf 15284 dveflem 15394 reeff1o 15441 reefiso 15445 ioocosf1o 15522 lgslem2 15674 lgsfcl2 15679 lgsne0 15711 2lgslem1b 15762 umgrbien 15904 ex-fl 16047 bj-indint 16252 bj-omord 16281 012of 16316 2o01f 16317 0nninf 16329 peano4nninf 16331 taupi 16400 |
| Copyright terms: Public domain | W3C validator |