![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir2an | Unicode version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbir2an.1 |
![]() ![]() |
mpbir2an.2 |
![]() ![]() |
mpbiran2an.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpbir2an |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2an.2 |
. 2
![]() ![]() | |
2 | mpbir2an.1 |
. . 3
![]() ![]() | |
3 | mpbiran2an.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpbiran 942 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpbir 146 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3pm3.2i 1177 euequ1 2137 eqssi 3195 elini 3343 dtruarb 4220 opnzi 4264 so0 4357 we0 4392 ord0 4422 ordon 4518 onsucelsucexmidlem1 4560 regexmidlemm 4564 ordpwsucexmid 4602 reg3exmidlemwe 4611 ordom 4639 funi 5286 funcnvsn 5299 funinsn 5303 fnresi 5371 fn0 5373 f0 5444 fconst 5449 f10 5534 f1o0 5537 f1oi 5538 f1osn 5540 isoid 5853 iso0 5860 acexmidlem2 5915 fo1st 6210 fo2nd 6211 iordsmo 6350 tfrlem7 6370 tfrexlem 6387 mapsnf1o2 6750 1domsn 6873 inresflem 7119 0ct 7166 infnninf 7183 infnninfOLD 7184 exmidonfinlem 7253 exmidaclem 7268 pw1on 7286 sucpw1nel3 7293 1pi 7375 prarloclemcalc 7562 ltsopr 7656 ltsosr 7824 cnm 7892 axicn 7923 axaddf 7928 axmulf 7929 nnindnn 7953 mpomulf 8009 ltso 8097 negiso 8974 nnind 8998 0z 9328 dfuzi 9427 cnref1o 9716 elrpii 9722 xrltso 9862 0e0icopnf 10045 0e0iccpnf 10046 fz0to4untppr 10190 fldiv4p1lem1div2 10374 expcl2lemap 10622 expclzaplem 10634 expge0 10646 expge1 10647 xrnegiso 11405 fclim 11437 eff2 11823 reeff1 11843 ef01bndlem 11899 sin01bnd 11900 cos01bnd 11901 sin01gt0 11905 egt2lt3 11923 halfleoddlt 12035 2prm 12265 3prm 12266 1arith 12505 setsslnid 12670 xpsff1o 12932 isabli 13370 rngmgpf 13433 mgpf 13507 zringnzr 14090 fntopon 14192 istpsi 14207 ismeti 14514 tgqioo 14715 addcncntoplem 14719 divcnap 14723 abscncf 14740 recncf 14741 imcncf 14742 cjcncf 14743 maxcncf 14769 mincncf 14770 dveflem 14872 reeff1o 14908 reefiso 14912 ioocosf1o 14989 lgslem2 15117 lgsfcl2 15122 lgsne0 15154 ex-fl 15217 bj-indint 15423 bj-omord 15452 012of 15486 2o01f 15487 0nninf 15494 peano4nninf 15496 taupi 15563 |
Copyright terms: Public domain | W3C validator |