| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir2an | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir2an.1 |
|
| mpbir2an.2 |
|
| mpbiran2an.1 |
|
| Ref | Expression |
|---|---|
| mpbir2an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir2an.2 |
. 2
| |
| 2 | mpbir2an.1 |
. . 3
| |
| 3 | mpbiran2an.1 |
. . 3
| |
| 4 | 2, 3 | mpbiran 942 |
. 2
|
| 5 | 1, 4 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3pm3.2i 1177 euequ1 2148 eqssi 3208 elini 3356 dtruarb 4234 opnzi 4278 so0 4371 we0 4406 ord0 4436 ordon 4532 onsucelsucexmidlem1 4574 regexmidlemm 4578 ordpwsucexmid 4616 reg3exmidlemwe 4625 ordom 4653 funi 5300 funcnvsn 5313 funinsn 5317 fnresi 5387 fn0 5389 f0 5460 fconst 5465 f10 5550 f1o0 5553 f1oi 5554 f1osn 5556 isoid 5869 iso0 5876 acexmidlem2 5931 fo1st 6233 fo2nd 6234 iordsmo 6373 tfrlem7 6393 tfrexlem 6410 mapsnf1o2 6773 1domsn 6896 inresflem 7144 0ct 7191 infnninf 7208 infnninfOLD 7209 exmidonfinlem 7283 exmidaclem 7302 pw1on 7320 sucpw1nel3 7327 1pi 7410 prarloclemcalc 7597 ltsopr 7691 ltsosr 7859 cnm 7927 axicn 7958 axaddf 7963 axmulf 7964 nnindnn 7988 mpomulf 8044 ltso 8132 negiso 9010 nnind 9034 0z 9365 dfuzi 9465 cnref1o 9754 elrpii 9760 xrltso 9900 0e0icopnf 10083 0e0iccpnf 10084 fz0to4untppr 10228 fldiv4p1lem1div2 10429 expcl2lemap 10677 expclzaplem 10689 expge0 10701 expge1 10702 xrnegiso 11492 fclim 11524 eff2 11910 reeff1 11930 ef01bndlem 11986 sin01bnd 11987 cos01bnd 11988 sin01gt0 11992 egt2lt3 12010 halfleoddlt 12124 2prm 12368 3prm 12369 1arith 12609 setsslnid 12803 xpsff1o 13099 isabli 13554 rngmgpf 13617 mgpf 13691 zringnzr 14282 fntopon 14414 istpsi 14429 ismeti 14736 cnfldms 14926 tgqioo 14945 addcncntoplem 14951 divcnap 14955 abscncf 14975 recncf 14976 imcncf 14977 cjcncf 14978 maxcncf 15005 mincncf 15006 dveflem 15116 reeff1o 15163 reefiso 15167 ioocosf1o 15244 lgslem2 15396 lgsfcl2 15401 lgsne0 15433 2lgslem1b 15484 ex-fl 15525 bj-indint 15731 bj-omord 15760 012of 15794 2o01f 15795 0nninf 15805 peano4nninf 15807 taupi 15876 |
| Copyright terms: Public domain | W3C validator |