| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpbir2an | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| mpbir2an.1 | 
 | 
| mpbir2an.2 | 
 | 
| mpbiran2an.1 | 
 | 
| Ref | Expression | 
|---|---|
| mpbir2an | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpbir2an.2 | 
. 2
 | |
| 2 | mpbir2an.1 | 
. . 3
 | |
| 3 | mpbiran2an.1 | 
. . 3
 | |
| 4 | 2, 3 | mpbiran 942 | 
. 2
 | 
| 5 | 1, 4 | mpbir 146 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: 3pm3.2i 1177 euequ1 2140 eqssi 3199 elini 3347 dtruarb 4224 opnzi 4268 so0 4361 we0 4396 ord0 4426 ordon 4522 onsucelsucexmidlem1 4564 regexmidlemm 4568 ordpwsucexmid 4606 reg3exmidlemwe 4615 ordom 4643 funi 5290 funcnvsn 5303 funinsn 5307 fnresi 5375 fn0 5377 f0 5448 fconst 5453 f10 5538 f1o0 5541 f1oi 5542 f1osn 5544 isoid 5857 iso0 5864 acexmidlem2 5919 fo1st 6215 fo2nd 6216 iordsmo 6355 tfrlem7 6375 tfrexlem 6392 mapsnf1o2 6755 1domsn 6878 inresflem 7126 0ct 7173 infnninf 7190 infnninfOLD 7191 exmidonfinlem 7260 exmidaclem 7275 pw1on 7293 sucpw1nel3 7300 1pi 7382 prarloclemcalc 7569 ltsopr 7663 ltsosr 7831 cnm 7899 axicn 7930 axaddf 7935 axmulf 7936 nnindnn 7960 mpomulf 8016 ltso 8104 negiso 8982 nnind 9006 0z 9337 dfuzi 9436 cnref1o 9725 elrpii 9731 xrltso 9871 0e0icopnf 10054 0e0iccpnf 10055 fz0to4untppr 10199 fldiv4p1lem1div2 10395 expcl2lemap 10643 expclzaplem 10655 expge0 10667 expge1 10668 xrnegiso 11427 fclim 11459 eff2 11845 reeff1 11865 ef01bndlem 11921 sin01bnd 11922 cos01bnd 11923 sin01gt0 11927 egt2lt3 11945 halfleoddlt 12059 2prm 12295 3prm 12296 1arith 12536 setsslnid 12730 xpsff1o 12992 isabli 13430 rngmgpf 13493 mgpf 13567 zringnzr 14158 fntopon 14260 istpsi 14275 ismeti 14582 cnfldms 14772 tgqioo 14791 addcncntoplem 14797 divcnap 14801 abscncf 14821 recncf 14822 imcncf 14823 cjcncf 14824 maxcncf 14851 mincncf 14852 dveflem 14962 reeff1o 15009 reefiso 15013 ioocosf1o 15090 lgslem2 15242 lgsfcl2 15247 lgsne0 15279 2lgslem1b 15330 ex-fl 15371 bj-indint 15577 bj-omord 15606 012of 15640 2o01f 15641 0nninf 15648 peano4nninf 15650 taupi 15717 | 
| Copyright terms: Public domain | W3C validator |