Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  taupi Unicode version

Theorem taupi 13949
Description: Relationship between  tau and  pi. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.)
Assertion
Ref Expression
taupi  |-  tau  =  ( 2  x.  pi )

Proof of Theorem taupi
Dummy variables  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tau 11716 . 2  |-  tau  = inf ( ( RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )
2 lttri3 7978 . . . . 5  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
32adantl 275 . . . 4  |-  ( ( T.  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4 2re 8927 . . . . . 6  |-  2  e.  RR
5 pire 13347 . . . . . 6  |-  pi  e.  RR
64, 5remulcli 7913 . . . . 5  |-  ( 2  x.  pi )  e.  RR
76a1i 9 . . . 4  |-  ( T. 
->  ( 2  x.  pi )  e.  RR )
8 2rp 9594 . . . . . . 7  |-  2  e.  RR+
9 pirp 13350 . . . . . . 7  |-  pi  e.  RR+
10 rpmulcl 9614 . . . . . . 7  |-  ( ( 2  e.  RR+  /\  pi  e.  RR+ )  ->  (
2  x.  pi )  e.  RR+ )
118, 9, 10mp2an 423 . . . . . 6  |-  ( 2  x.  pi )  e.  RR+
126recni 7911 . . . . . . 7  |-  ( 2  x.  pi )  e.  CC
13 cos2pi 13365 . . . . . . 7  |-  ( cos `  ( 2  x.  pi ) )  =  1
14 cosf 11646 . . . . . . . . 9  |-  cos : CC
--> CC
15 ffn 5337 . . . . . . . . 9  |-  ( cos
: CC --> CC  ->  cos 
Fn  CC )
1614, 15ax-mp 5 . . . . . . . 8  |-  cos  Fn  CC
17 fniniseg 5605 . . . . . . . 8  |-  ( cos 
Fn  CC  ->  ( ( 2  x.  pi )  e.  ( `' cos " { 1 } )  <-> 
( ( 2  x.  pi )  e.  CC  /\  ( cos `  (
2  x.  pi ) )  =  1 ) ) )
1816, 17ax-mp 5 . . . . . . 7  |-  ( ( 2  x.  pi )  e.  ( `' cos " { 1 } )  <-> 
( ( 2  x.  pi )  e.  CC  /\  ( cos `  (
2  x.  pi ) )  =  1 ) )
1912, 13, 18mpbir2an 932 . . . . . 6  |-  ( 2  x.  pi )  e.  ( `' cos " {
1 } )
2011, 19elini 3306 . . . . 5  |-  ( 2  x.  pi )  e.  ( RR+  i^i  ( `' cos " { 1 } ) )
2120a1i 9 . . . 4  |-  ( T. 
->  ( 2  x.  pi )  e.  ( RR+  i^i  ( `' cos " {
1 } ) ) )
22 elinel2 3309 . . . . . . . . . 10  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  ->  x  e.  ( `' cos " { 1 } ) )
23 fniniseg 5605 . . . . . . . . . . 11  |-  ( cos 
Fn  CC  ->  ( x  e.  ( `' cos " { 1 } )  <-> 
( x  e.  CC  /\  ( cos `  x
)  =  1 ) ) )
2416, 23ax-mp 5 . . . . . . . . . 10  |-  ( x  e.  ( `' cos " { 1 } )  <-> 
( x  e.  CC  /\  ( cos `  x
)  =  1 ) )
2522, 24sylib 121 . . . . . . . . 9  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  -> 
( x  e.  CC  /\  ( cos `  x
)  =  1 ) )
2625simprd 113 . . . . . . . 8  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  -> 
( cos `  x
)  =  1 )
2726adantr 274 . . . . . . 7  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  ( cos `  x )  =  1 )
28 elinel1 3308 . . . . . . . . . . 11  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  ->  x  e.  RR+ )
2928rpred 9632 . . . . . . . . . 10  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  ->  x  e.  RR )
3029adantr 274 . . . . . . . . 9  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  x  e.  RR )
3128rpgt0d 9635 . . . . . . . . . 10  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  -> 
0  <  x )
3231adantr 274 . . . . . . . . 9  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  0  <  x )
33 simpr 109 . . . . . . . . 9  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  x  <  ( 2  x.  pi ) )
34 0xr 7945 . . . . . . . . . 10  |-  0  e.  RR*
356rexri 7956 . . . . . . . . . 10  |-  ( 2  x.  pi )  e. 
RR*
36 elioo2 9857 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  (
2  x.  pi )  e.  RR* )  ->  (
x  e.  ( 0 (,) ( 2  x.  pi ) )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  <  ( 2  x.  pi ) ) ) )
3734, 35, 36mp2an 423 . . . . . . . . 9  |-  ( x  e.  ( 0 (,) ( 2  x.  pi ) )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  <  ( 2  x.  pi ) ) )
3830, 32, 33, 37syl3anbrc 1171 . . . . . . . 8  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  x  e.  ( 0 (,) (
2  x.  pi ) ) )
39 cos02pilt1 13412 . . . . . . . 8  |-  ( x  e.  ( 0 (,) ( 2  x.  pi ) )  ->  ( cos `  x )  <  1 )
4038, 39syl 14 . . . . . . 7  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  ( cos `  x )  <  1
)
4127, 40eqbrtrrd 4006 . . . . . 6  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  1  <  1 )
42 1red 7914 . . . . . . 7  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  1  e.  RR )
4342ltnrd 8010 . . . . . 6  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  -.  1  <  1 )
4441, 43pm2.65da 651 . . . . 5  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  ->  -.  x  <  ( 2  x.  pi ) )
4544adantl 275 . . . 4  |-  ( ( T.  /\  x  e.  ( RR+  i^i  ( `' cos " { 1 } ) ) )  ->  -.  x  <  ( 2  x.  pi ) )
463, 7, 21, 45infminti 6992 . . 3  |-  ( T. 
-> inf ( ( RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )  =  ( 2  x.  pi ) )
4746mptru 1352 . 2  |- inf ( (
RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )  =  ( 2  x.  pi )
481, 47eqtri 2186 1  |-  tau  =  ( 2  x.  pi )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343   T. wtru 1344    e. wcel 2136    i^i cin 3115   {csn 3576   class class class wbr 3982   `'ccnv 4603   "cima 4607    Fn wfn 5183   -->wf 5184   ` cfv 5188  (class class class)co 5842  infcinf 6948   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    x. cmul 7758   RR*cxr 7932    < clt 7933   2c2 8908   RR+crp 9589   (,)cioo 9824   cosccos 11586   picpi 11588   tauctau 11715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-pre-suploc 7874  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-map 6616  df-pm 6617  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ioo 9828  df-ioc 9829  df-ico 9830  df-icc 9831  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-sin 11591  df-cos 11592  df-pi 11594  df-tau 11716  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-tx 12893  df-cncf 13198  df-limced 13265  df-dvap 13266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator