Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  taupi Unicode version

Theorem taupi 13295
Description: Relationship between  tau and  pi. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.)
Assertion
Ref Expression
taupi  |-  tau  =  ( 2  x.  pi )

Proof of Theorem taupi
Dummy variables  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tau 11488 . 2  |-  tau  = inf ( ( RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )
2 lttri3 7851 . . . . 5  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
32adantl 275 . . . 4  |-  ( ( T.  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4 2re 8797 . . . . . 6  |-  2  e.  RR
5 pire 12883 . . . . . 6  |-  pi  e.  RR
64, 5remulcli 7787 . . . . 5  |-  ( 2  x.  pi )  e.  RR
76a1i 9 . . . 4  |-  ( T. 
->  ( 2  x.  pi )  e.  RR )
8 2rp 9453 . . . . . . 7  |-  2  e.  RR+
9 pirp 12886 . . . . . . 7  |-  pi  e.  RR+
10 rpmulcl 9473 . . . . . . 7  |-  ( ( 2  e.  RR+  /\  pi  e.  RR+ )  ->  (
2  x.  pi )  e.  RR+ )
118, 9, 10mp2an 422 . . . . . 6  |-  ( 2  x.  pi )  e.  RR+
126recni 7785 . . . . . . 7  |-  ( 2  x.  pi )  e.  CC
13 cos2pi 12901 . . . . . . 7  |-  ( cos `  ( 2  x.  pi ) )  =  1
14 cosf 11418 . . . . . . . . 9  |-  cos : CC
--> CC
15 ffn 5272 . . . . . . . . 9  |-  ( cos
: CC --> CC  ->  cos 
Fn  CC )
1614, 15ax-mp 5 . . . . . . . 8  |-  cos  Fn  CC
17 fniniseg 5540 . . . . . . . 8  |-  ( cos 
Fn  CC  ->  ( ( 2  x.  pi )  e.  ( `' cos " { 1 } )  <-> 
( ( 2  x.  pi )  e.  CC  /\  ( cos `  (
2  x.  pi ) )  =  1 ) ) )
1816, 17ax-mp 5 . . . . . . 7  |-  ( ( 2  x.  pi )  e.  ( `' cos " { 1 } )  <-> 
( ( 2  x.  pi )  e.  CC  /\  ( cos `  (
2  x.  pi ) )  =  1 ) )
1912, 13, 18mpbir2an 926 . . . . . 6  |-  ( 2  x.  pi )  e.  ( `' cos " {
1 } )
2011, 19elini 3260 . . . . 5  |-  ( 2  x.  pi )  e.  ( RR+  i^i  ( `' cos " { 1 } ) )
2120a1i 9 . . . 4  |-  ( T. 
->  ( 2  x.  pi )  e.  ( RR+  i^i  ( `' cos " {
1 } ) ) )
22 elinel2 3263 . . . . . . . . . 10  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  ->  x  e.  ( `' cos " { 1 } ) )
23 fniniseg 5540 . . . . . . . . . . 11  |-  ( cos 
Fn  CC  ->  ( x  e.  ( `' cos " { 1 } )  <-> 
( x  e.  CC  /\  ( cos `  x
)  =  1 ) ) )
2416, 23ax-mp 5 . . . . . . . . . 10  |-  ( x  e.  ( `' cos " { 1 } )  <-> 
( x  e.  CC  /\  ( cos `  x
)  =  1 ) )
2522, 24sylib 121 . . . . . . . . 9  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  -> 
( x  e.  CC  /\  ( cos `  x
)  =  1 ) )
2625simprd 113 . . . . . . . 8  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  -> 
( cos `  x
)  =  1 )
2726adantr 274 . . . . . . 7  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  ( cos `  x )  =  1 )
28 elinel1 3262 . . . . . . . . . . 11  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  ->  x  e.  RR+ )
2928rpred 9490 . . . . . . . . . 10  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  ->  x  e.  RR )
3029adantr 274 . . . . . . . . 9  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  x  e.  RR )
3128rpgt0d 9493 . . . . . . . . . 10  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  -> 
0  <  x )
3231adantr 274 . . . . . . . . 9  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  0  <  x )
33 simpr 109 . . . . . . . . 9  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  x  <  ( 2  x.  pi ) )
34 0xr 7819 . . . . . . . . . 10  |-  0  e.  RR*
356rexri 7830 . . . . . . . . . 10  |-  ( 2  x.  pi )  e. 
RR*
36 elioo2 9711 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  (
2  x.  pi )  e.  RR* )  ->  (
x  e.  ( 0 (,) ( 2  x.  pi ) )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  <  ( 2  x.  pi ) ) ) )
3734, 35, 36mp2an 422 . . . . . . . . 9  |-  ( x  e.  ( 0 (,) ( 2  x.  pi ) )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  <  ( 2  x.  pi ) ) )
3830, 32, 33, 37syl3anbrc 1165 . . . . . . . 8  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  x  e.  ( 0 (,) (
2  x.  pi ) ) )
39 cos02pilt1 12948 . . . . . . . 8  |-  ( x  e.  ( 0 (,) ( 2  x.  pi ) )  ->  ( cos `  x )  <  1 )
4038, 39syl 14 . . . . . . 7  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  ( cos `  x )  <  1
)
4127, 40eqbrtrrd 3952 . . . . . 6  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  1  <  1 )
42 1red 7788 . . . . . . 7  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  1  e.  RR )
4342ltnrd 7882 . . . . . 6  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  -.  1  <  1 )
4441, 43pm2.65da 650 . . . . 5  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  ->  -.  x  <  ( 2  x.  pi ) )
4544adantl 275 . . . 4  |-  ( ( T.  /\  x  e.  ( RR+  i^i  ( `' cos " { 1 } ) ) )  ->  -.  x  <  ( 2  x.  pi ) )
463, 7, 21, 45infminti 6914 . . 3  |-  ( T. 
-> inf ( ( RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )  =  ( 2  x.  pi ) )
4746mptru 1340 . 2  |- inf ( (
RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )  =  ( 2  x.  pi )
481, 47eqtri 2160 1  |-  tau  =  ( 2  x.  pi )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331   T. wtru 1332    e. wcel 1480    i^i cin 3070   {csn 3527   class class class wbr 3929   `'ccnv 4538   "cima 4542    Fn wfn 5118   -->wf 5119   ` cfv 5123  (class class class)co 5774  infcinf 6870   CCcc 7625   RRcr 7626   0cc0 7627   1c1 7628    x. cmul 7632   RR*cxr 7806    < clt 7807   2c2 8778   RR+crp 9448   (,)cioo 9678   cosccos 11358   picpi 11360   tauctau 11487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747  ax-pre-suploc 7748  ax-addf 7749  ax-mulf 7750
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-5 8789  df-6 8790  df-7 8791  df-8 8792  df-9 8793  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-xneg 9566  df-xadd 9567  df-ioo 9682  df-ioc 9683  df-ico 9684  df-icc 9685  df-fz 9798  df-fzo 9927  df-seqfrec 10226  df-exp 10300  df-fac 10479  df-bc 10501  df-ihash 10529  df-shft 10594  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-clim 11055  df-sumdc 11130  df-ef 11361  df-sin 11363  df-cos 11364  df-pi 11366  df-tau 11488  df-rest 12131  df-topgen 12150  df-psmet 12165  df-xmet 12166  df-met 12167  df-bl 12168  df-mopn 12169  df-top 12174  df-topon 12187  df-bases 12219  df-ntr 12274  df-cn 12366  df-cnp 12367  df-tx 12431  df-cncf 12736  df-limced 12803  df-dvap 12804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator