Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  taupi Unicode version

Theorem taupi 16400
Description: Relationship between  tau and  pi. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.)
Assertion
Ref Expression
taupi  |-  tau  =  ( 2  x.  pi )

Proof of Theorem taupi
Dummy variables  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tau 12282 . 2  |-  tau  = inf ( ( RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )
2 lttri3 8222 . . . . 5  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
32adantl 277 . . . 4  |-  ( ( T.  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4 2re 9176 . . . . . 6  |-  2  e.  RR
5 pire 15454 . . . . . 6  |-  pi  e.  RR
64, 5remulcli 8156 . . . . 5  |-  ( 2  x.  pi )  e.  RR
76a1i 9 . . . 4  |-  ( T. 
->  ( 2  x.  pi )  e.  RR )
8 2rp 9850 . . . . . . 7  |-  2  e.  RR+
9 pirp 15457 . . . . . . 7  |-  pi  e.  RR+
10 rpmulcl 9870 . . . . . . 7  |-  ( ( 2  e.  RR+  /\  pi  e.  RR+ )  ->  (
2  x.  pi )  e.  RR+ )
118, 9, 10mp2an 426 . . . . . 6  |-  ( 2  x.  pi )  e.  RR+
126recni 8154 . . . . . . 7  |-  ( 2  x.  pi )  e.  CC
13 cos2pi 15472 . . . . . . 7  |-  ( cos `  ( 2  x.  pi ) )  =  1
14 cosf 12211 . . . . . . . . 9  |-  cos : CC
--> CC
15 ffn 5472 . . . . . . . . 9  |-  ( cos
: CC --> CC  ->  cos 
Fn  CC )
1614, 15ax-mp 5 . . . . . . . 8  |-  cos  Fn  CC
17 fniniseg 5754 . . . . . . . 8  |-  ( cos 
Fn  CC  ->  ( ( 2  x.  pi )  e.  ( `' cos " { 1 } )  <-> 
( ( 2  x.  pi )  e.  CC  /\  ( cos `  (
2  x.  pi ) )  =  1 ) ) )
1816, 17ax-mp 5 . . . . . . 7  |-  ( ( 2  x.  pi )  e.  ( `' cos " { 1 } )  <-> 
( ( 2  x.  pi )  e.  CC  /\  ( cos `  (
2  x.  pi ) )  =  1 ) )
1912, 13, 18mpbir2an 948 . . . . . 6  |-  ( 2  x.  pi )  e.  ( `' cos " {
1 } )
2011, 19elini 3388 . . . . 5  |-  ( 2  x.  pi )  e.  ( RR+  i^i  ( `' cos " { 1 } ) )
2120a1i 9 . . . 4  |-  ( T. 
->  ( 2  x.  pi )  e.  ( RR+  i^i  ( `' cos " {
1 } ) ) )
22 elinel2 3391 . . . . . . . . . 10  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  ->  x  e.  ( `' cos " { 1 } ) )
23 fniniseg 5754 . . . . . . . . . . 11  |-  ( cos 
Fn  CC  ->  ( x  e.  ( `' cos " { 1 } )  <-> 
( x  e.  CC  /\  ( cos `  x
)  =  1 ) ) )
2416, 23ax-mp 5 . . . . . . . . . 10  |-  ( x  e.  ( `' cos " { 1 } )  <-> 
( x  e.  CC  /\  ( cos `  x
)  =  1 ) )
2522, 24sylib 122 . . . . . . . . 9  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  -> 
( x  e.  CC  /\  ( cos `  x
)  =  1 ) )
2625simprd 114 . . . . . . . 8  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  -> 
( cos `  x
)  =  1 )
2726adantr 276 . . . . . . 7  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  ( cos `  x )  =  1 )
28 elinel1 3390 . . . . . . . . . . 11  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  ->  x  e.  RR+ )
2928rpred 9888 . . . . . . . . . 10  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  ->  x  e.  RR )
3029adantr 276 . . . . . . . . 9  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  x  e.  RR )
3128rpgt0d 9891 . . . . . . . . . 10  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  -> 
0  <  x )
3231adantr 276 . . . . . . . . 9  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  0  <  x )
33 simpr 110 . . . . . . . . 9  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  x  <  ( 2  x.  pi ) )
34 0xr 8189 . . . . . . . . . 10  |-  0  e.  RR*
356rexri 8200 . . . . . . . . . 10  |-  ( 2  x.  pi )  e. 
RR*
36 elioo2 10113 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  (
2  x.  pi )  e.  RR* )  ->  (
x  e.  ( 0 (,) ( 2  x.  pi ) )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  <  ( 2  x.  pi ) ) ) )
3734, 35, 36mp2an 426 . . . . . . . . 9  |-  ( x  e.  ( 0 (,) ( 2  x.  pi ) )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  <  ( 2  x.  pi ) ) )
3830, 32, 33, 37syl3anbrc 1205 . . . . . . . 8  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  x  e.  ( 0 (,) (
2  x.  pi ) ) )
39 cos02pilt1 15519 . . . . . . . 8  |-  ( x  e.  ( 0 (,) ( 2  x.  pi ) )  ->  ( cos `  x )  <  1 )
4038, 39syl 14 . . . . . . 7  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  ( cos `  x )  <  1
)
4127, 40eqbrtrrd 4106 . . . . . 6  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  1  <  1 )
42 1red 8157 . . . . . . 7  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  1  e.  RR )
4342ltnrd 8254 . . . . . 6  |-  ( ( x  e.  ( RR+  i^i  ( `' cos " {
1 } ) )  /\  x  <  (
2  x.  pi ) )  ->  -.  1  <  1 )
4441, 43pm2.65da 665 . . . . 5  |-  ( x  e.  ( RR+  i^i  ( `' cos " { 1 } ) )  ->  -.  x  <  ( 2  x.  pi ) )
4544adantl 277 . . . 4  |-  ( ( T.  /\  x  e.  ( RR+  i^i  ( `' cos " { 1 } ) ) )  ->  -.  x  <  ( 2  x.  pi ) )
463, 7, 21, 45infminti 7190 . . 3  |-  ( T. 
-> inf ( ( RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )  =  ( 2  x.  pi ) )
4746mptru 1404 . 2  |- inf ( (
RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )  =  ( 2  x.  pi )
481, 47eqtri 2250 1  |-  tau  =  ( 2  x.  pi )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395   T. wtru 1396    e. wcel 2200    i^i cin 3196   {csn 3666   class class class wbr 4082   `'ccnv 4717   "cima 4721    Fn wfn 5312   -->wf 5313   ` cfv 5317  (class class class)co 6000  infcinf 7146   CCcc 7993   RRcr 7994   0cc0 7995   1c1 7996    x. cmul 8000   RR*cxr 8176    < clt 8177   2c2 9157   RR+crp 9845   (,)cioo 10080   cosccos 12151   picpi 12153   tauctau 12281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115  ax-pre-suploc 8116  ax-addf 8117  ax-mulf 8118
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-of 6216  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-map 6795  df-pm 6796  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-xneg 9964  df-xadd 9965  df-ioo 10084  df-ioc 10085  df-ico 10086  df-icc 10087  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-fac 10943  df-bc 10965  df-ihash 10993  df-shft 11321  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860  df-ef 12154  df-sin 12156  df-cos 12157  df-pi 12159  df-tau 12282  df-rest 13269  df-topgen 13288  df-psmet 14501  df-xmet 14502  df-met 14503  df-bl 14504  df-mopn 14505  df-top 14666  df-topon 14679  df-bases 14711  df-ntr 14764  df-cn 14856  df-cnp 14857  df-tx 14921  df-cncf 15239  df-limced 15324  df-dvap 15325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator