Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elini | GIF version |
Description: Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elini.1 | ⊢ 𝐴 ∈ 𝐵 |
elini.2 | ⊢ 𝐴 ∈ 𝐶 |
Ref | Expression |
---|---|
elini | ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elini.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | elini.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
3 | elin 3305 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
4 | 1, 2, 3 | mpbir2an 932 | 1 ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ∩ cin 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 |
This theorem is referenced by: exmidonfinlem 7149 taupi 13949 |
Copyright terms: Public domain | W3C validator |