ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elopabr Unicode version

Theorem elopabr 4370
Description: Membership in an ordered-pair class abstraction defined by a binary relation. (Contributed by AV, 16-Feb-2021.) (Proof shortened by SN, 11-Dec-2024.)
Assertion
Ref Expression
elopabr  |-  ( A  e.  { <. x ,  y >.  |  x R y }  ->  A  e.  R )
Distinct variable groups:    x, R    y, R
Allowed substitution hints:    A( x, y)

Proof of Theorem elopabr
StepHypRef Expression
1 opabss 4147 . 2  |-  { <. x ,  y >.  |  x R y }  C_  R
21sseli 3220 1  |-  ( A  e.  { <. x ,  y >.  |  x R y }  ->  A  e.  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   class class class wbr 4082   {copab 4143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-in 3203  df-ss 3210  df-br 4083  df-opab 4145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator