ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunopab Unicode version

Theorem iunopab 4117
Description: Move indexed union inside an ordered-pair abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Assertion
Ref Expression
iunopab  |-  U_ z  e.  A  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  E. z  e.  A  ph }
Distinct variable groups:    x, A    y, A    y, z    x, z
Allowed substitution hints:    ph( x, y, z)    A( z)

Proof of Theorem iunopab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elopab 4094 . . . . 5  |-  ( w  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) )
21rexbii 2386 . . . 4  |-  ( E. z  e.  A  w  e.  { <. x ,  y >.  |  ph } 
<->  E. z  e.  A  E. x E. y ( w  =  <. x ,  y >.  /\  ph ) )
3 rexcom4 2643 . . . . 5  |-  ( E. z  e.  A  E. x E. y ( w  =  <. x ,  y
>.  /\  ph )  <->  E. x E. z  e.  A  E. y ( w  = 
<. x ,  y >.  /\  ph ) )
4 rexcom4 2643 . . . . . . 7  |-  ( E. z  e.  A  E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. y E. z  e.  A  ( w  =  <. x ,  y >.  /\  ph ) )
5 r19.42v 2525 . . . . . . . 8  |-  ( E. z  e.  A  ( w  =  <. x ,  y >.  /\  ph ) 
<->  ( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
65exbii 1542 . . . . . . 7  |-  ( E. y E. z  e.  A  ( w  = 
<. x ,  y >.  /\  ph )  <->  E. y
( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
74, 6bitri 183 . . . . . 6  |-  ( E. z  e.  A  E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. y
( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
87exbii 1542 . . . . 5  |-  ( E. x E. z  e.  A  E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  E. x E. y
( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
93, 8bitri 183 . . . 4  |-  ( E. z  e.  A  E. x E. y ( w  =  <. x ,  y
>.  /\  ph )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z  e.  A  ph ) )
102, 9bitri 183 . . 3  |-  ( E. z  e.  A  w  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
1110abbii 2204 . 2  |-  { w  |  E. z  e.  A  w  e.  { <. x ,  y >.  |  ph } }  =  {
w  |  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z  e.  A  ph ) }
12 df-iun 3738 . 2  |-  U_ z  e.  A  { <. x ,  y >.  |  ph }  =  { w  |  E. z  e.  A  w  e.  { <. x ,  y >.  |  ph } }
13 df-opab 3906 . 2  |-  { <. x ,  y >.  |  E. z  e.  A  ph }  =  { w  |  E. x E. y ( w  =  <. x ,  y
>.  /\  E. z  e.  A  ph ) }
1411, 12, 133eqtr4i 2119 1  |-  U_ z  e.  A  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  E. z  e.  A  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1290   E.wex 1427    e. wcel 1439   {cab 2075   E.wrex 2361   <.cop 3453   U_ciun 3736   {copab 3904
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-iun 3738  df-opab 3906
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator