ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunopab Unicode version

Theorem iunopab 4316
Description: Move indexed union inside an ordered-pair abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Assertion
Ref Expression
iunopab  |-  U_ z  e.  A  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  E. z  e.  A  ph }
Distinct variable groups:    x, A    y, A    y, z    x, z
Allowed substitution hints:    ph( x, y, z)    A( z)

Proof of Theorem iunopab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elopab 4292 . . . . 5  |-  ( w  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) )
21rexbii 2504 . . . 4  |-  ( E. z  e.  A  w  e.  { <. x ,  y >.  |  ph } 
<->  E. z  e.  A  E. x E. y ( w  =  <. x ,  y >.  /\  ph ) )
3 rexcom4 2786 . . . . 5  |-  ( E. z  e.  A  E. x E. y ( w  =  <. x ,  y
>.  /\  ph )  <->  E. x E. z  e.  A  E. y ( w  = 
<. x ,  y >.  /\  ph ) )
4 rexcom4 2786 . . . . . . 7  |-  ( E. z  e.  A  E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. y E. z  e.  A  ( w  =  <. x ,  y >.  /\  ph ) )
5 r19.42v 2654 . . . . . . . 8  |-  ( E. z  e.  A  ( w  =  <. x ,  y >.  /\  ph ) 
<->  ( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
65exbii 1619 . . . . . . 7  |-  ( E. y E. z  e.  A  ( w  = 
<. x ,  y >.  /\  ph )  <->  E. y
( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
74, 6bitri 184 . . . . . 6  |-  ( E. z  e.  A  E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. y
( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
87exbii 1619 . . . . 5  |-  ( E. x E. z  e.  A  E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  E. x E. y
( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
93, 8bitri 184 . . . 4  |-  ( E. z  e.  A  E. x E. y ( w  =  <. x ,  y
>.  /\  ph )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z  e.  A  ph ) )
102, 9bitri 184 . . 3  |-  ( E. z  e.  A  w  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
1110abbii 2312 . 2  |-  { w  |  E. z  e.  A  w  e.  { <. x ,  y >.  |  ph } }  =  {
w  |  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z  e.  A  ph ) }
12 df-iun 3918 . 2  |-  U_ z  e.  A  { <. x ,  y >.  |  ph }  =  { w  |  E. z  e.  A  w  e.  { <. x ,  y >.  |  ph } }
13 df-opab 4095 . 2  |-  { <. x ,  y >.  |  E. z  e.  A  ph }  =  { w  |  E. x E. y ( w  =  <. x ,  y
>.  /\  E. z  e.  A  ph ) }
1411, 12, 133eqtr4i 2227 1  |-  U_ z  e.  A  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  E. z  e.  A  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   E.wrex 2476   <.cop 3625   U_ciun 3916   {copab 4093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-iun 3918  df-opab 4095
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator