ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunopab Unicode version

Theorem iunopab 4299
Description: Move indexed union inside an ordered-pair abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Assertion
Ref Expression
iunopab  |-  U_ z  e.  A  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  E. z  e.  A  ph }
Distinct variable groups:    x, A    y, A    y, z    x, z
Allowed substitution hints:    ph( x, y, z)    A( z)

Proof of Theorem iunopab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elopab 4276 . . . . 5  |-  ( w  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) )
21rexbii 2497 . . . 4  |-  ( E. z  e.  A  w  e.  { <. x ,  y >.  |  ph } 
<->  E. z  e.  A  E. x E. y ( w  =  <. x ,  y >.  /\  ph ) )
3 rexcom4 2775 . . . . 5  |-  ( E. z  e.  A  E. x E. y ( w  =  <. x ,  y
>.  /\  ph )  <->  E. x E. z  e.  A  E. y ( w  = 
<. x ,  y >.  /\  ph ) )
4 rexcom4 2775 . . . . . . 7  |-  ( E. z  e.  A  E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. y E. z  e.  A  ( w  =  <. x ,  y >.  /\  ph ) )
5 r19.42v 2647 . . . . . . . 8  |-  ( E. z  e.  A  ( w  =  <. x ,  y >.  /\  ph ) 
<->  ( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
65exbii 1616 . . . . . . 7  |-  ( E. y E. z  e.  A  ( w  = 
<. x ,  y >.  /\  ph )  <->  E. y
( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
74, 6bitri 184 . . . . . 6  |-  ( E. z  e.  A  E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. y
( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
87exbii 1616 . . . . 5  |-  ( E. x E. z  e.  A  E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  E. x E. y
( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
93, 8bitri 184 . . . 4  |-  ( E. z  e.  A  E. x E. y ( w  =  <. x ,  y
>.  /\  ph )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z  e.  A  ph ) )
102, 9bitri 184 . . 3  |-  ( E. z  e.  A  w  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
1110abbii 2305 . 2  |-  { w  |  E. z  e.  A  w  e.  { <. x ,  y >.  |  ph } }  =  {
w  |  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z  e.  A  ph ) }
12 df-iun 3903 . 2  |-  U_ z  e.  A  { <. x ,  y >.  |  ph }  =  { w  |  E. z  e.  A  w  e.  { <. x ,  y >.  |  ph } }
13 df-opab 4080 . 2  |-  { <. x ,  y >.  |  E. z  e.  A  ph }  =  { w  |  E. x E. y ( w  =  <. x ,  y
>.  /\  E. z  e.  A  ph ) }
1411, 12, 133eqtr4i 2220 1  |-  U_ z  e.  A  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  E. z  e.  A  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2160   {cab 2175   E.wrex 2469   <.cop 3610   U_ciun 3901   {copab 4078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-iun 3903  df-opab 4080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator