![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseli | Unicode version |
Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sseli.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sseli |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseli.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | ssel 3019 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-11 1442 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-in 3005 df-ss 3012 |
This theorem is referenced by: sselii 3022 sseldi 3023 elun1 3167 elun2 3168 finds 4415 finds2 4416 issref 4814 2elresin 5125 fvun1 5370 fvmptssdm 5387 fvimacnvi 5413 elpreima 5418 ofrfval 5864 fnofval 5865 off 5868 offres 5906 eqopi 5942 op1steq 5949 dfoprab4 5962 f1od2 6000 reldmtpos 6018 smores3 6058 smores2 6059 pinn 6868 indpi 6901 enq0enq 6990 preqlu 7031 elinp 7033 prop 7034 elnp1st2nd 7035 prarloclem5 7059 cauappcvgprlemladd 7217 peano5nnnn 7427 nnindnn 7428 recn 7475 rexr 7533 peano5nni 8425 nnre 8429 nncn 8430 nnind 8438 nnnn0 8680 nn0re 8682 nn0cn 8683 nn0xnn0 8740 nnz 8769 nn0z 8770 nnq 9118 qcn 9119 rpre 9140 iccshftri 9412 iccshftli 9414 iccdili 9416 icccntri 9418 fzval2 9427 fzelp1 9488 4fvwrd4 9551 elfzo1 9601 expcllem 9966 expcl2lemap 9967 m1expcl2 9977 bcm1k 10168 bcpasc 10174 cau3lem 10547 climconst2 10679 fisum 10778 binomlem 10877 dvdsflip 11130 infssuzcldc 11225 isprm3 11378 phimullem 11479 structcnvcnv 11510 fvsetsid 11528 exmidsbthrlem 11912 |
Copyright terms: Public domain | W3C validator |