| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sseli | Unicode version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| sseli.1 | 
 | 
| Ref | Expression | 
|---|---|
| sseli | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sseli.1 | 
. 2
 | |
| 2 | ssel 3177 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: sselii 3180 sselid 3181 elun1 3330 elun2 3331 finds 4636 finds2 4637 issref 5052 2elresin 5369 fvun1 5627 fvmptssdm 5646 elfvmptrab1 5656 fvimacnvi 5676 elpreima 5681 ofrfval 6144 ofvalg 6145 off 6148 offres 6192 eqopi 6230 op1steq 6237 dfoprab4 6250 f1od2 6293 reldmtpos 6311 smores3 6351 smores2 6352 ctssdccl 7177 pinn 7376 indpi 7409 enq0enq 7498 preqlu 7539 elinp 7541 prop 7542 elnp1st2nd 7543 prarloclem5 7567 cauappcvgprlemladd 7725 peano5nnnn 7959 nnindnn 7960 recn 8012 rexr 8072 peano5nni 8993 nnre 8997 nncn 8998 nnind 9006 nnnn0 9256 nn0re 9258 nn0cn 9259 nn0xnn0 9316 nnz 9345 nn0z 9346 nnq 9707 qcn 9708 rpre 9735 iccshftri 10070 iccshftli 10072 iccdili 10074 icccntri 10076 fzval2 10086 fzelp1 10149 4fvwrd4 10215 elfzo1 10266 infssuzcldc 10325 expcllem 10642 expcl2lemap 10643 m1expcl2 10653 bcm1k 10852 bcpasc 10858 wrdv 10951 cau3lem 11279 climconst2 11456 fsum3 11552 binomlem 11648 fprodge1 11804 cos12dec 11933 dvdsflip 12016 isprm3 12286 phimullem 12393 prmdiveq 12404 structcnvcnv 12694 fvsetsid 12712 ptex 12935 nmzsubg 13340 nmznsg 13343 nzrring 13739 lringnzr 13749 rege0subm 14140 znrrg 14216 tgval2 14287 qtopbasss 14757 dedekindicc 14869 ivthinc 14879 ivthdec 14880 dvply2 15003 cosz12 15016 cos0pilt1 15088 ioocosf1o 15090 mpodvdsmulf1o 15226 fsumdvdsmul 15227 lgsquadlemofi 15317 lgsquadlem1 15318 lgsquadlem2 15319 exmidsbthrlem 15666 | 
| Copyright terms: Public domain | W3C validator |