| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseli | Unicode version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseli.1 |
|
| Ref | Expression |
|---|---|
| sseli |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseli.1 |
. 2
| |
| 2 | ssel 3218 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sselii 3221 sselid 3222 elun1 3371 elun2 3372 elopabr 4371 elopabran 4372 finds 4692 finds2 4693 issref 5111 2elresin 5434 fvun1 5700 fvmptssdm 5719 elfvmptrab1 5729 fvimacnvi 5749 elpreima 5754 ofrfval 6227 ofvalg 6228 off 6231 offres 6280 eqopi 6318 op1steq 6325 dfoprab4 6338 f1od2 6381 reldmtpos 6399 smores3 6439 smores2 6440 ctssdccl 7278 pinn 7496 indpi 7529 enq0enq 7618 preqlu 7659 elinp 7661 prop 7662 elnp1st2nd 7663 prarloclem5 7687 cauappcvgprlemladd 7845 peano5nnnn 8079 nnindnn 8080 recn 8132 rexr 8192 peano5nni 9113 nnre 9117 nncn 9118 nnind 9126 nnnn0 9376 nn0re 9378 nn0cn 9379 nn0xnn0 9436 nnz 9465 nn0z 9466 nnq 9828 qcn 9829 rpre 9856 iccshftri 10191 iccshftli 10193 iccdili 10195 icccntri 10197 fzval2 10207 fzelp1 10270 4fvwrd4 10336 elfzo1 10391 infssuzcldc 10455 expcllem 10772 expcl2lemap 10773 m1expcl2 10783 bcm1k 10982 bcpasc 10988 wrdv 11087 ccatclab 11129 pfxfv0 11224 pfxfvlsw 11227 cau3lem 11625 climconst2 11802 fsum3 11898 binomlem 11994 fprodge1 12150 cos12dec 12279 dvdsflip 12362 isprm3 12640 phimullem 12747 prmdiveq 12758 structcnvcnv 13048 fvsetsid 13066 ptex 13297 nmzsubg 13747 nmznsg 13750 nzrring 14147 lringnzr 14157 rege0subm 14548 znrrg 14624 tgval2 14725 qtopbasss 15195 dedekindicc 15307 ivthinc 15317 ivthdec 15318 dvply2 15441 cosz12 15454 cos0pilt1 15526 ioocosf1o 15528 mpodvdsmulf1o 15664 fsumdvdsmul 15665 lgsquadlemofi 15755 lgsquadlem1 15756 lgsquadlem2 15757 wlk1walkdom 16070 exmidsbthrlem 16390 |
| Copyright terms: Public domain | W3C validator |