| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseli | Unicode version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseli.1 |
|
| Ref | Expression |
|---|---|
| sseli |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseli.1 |
. 2
| |
| 2 | ssel 3195 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: sselii 3198 sselid 3199 elun1 3348 elun2 3349 finds 4666 finds2 4667 issref 5084 2elresin 5406 fvun1 5668 fvmptssdm 5687 elfvmptrab1 5697 fvimacnvi 5717 elpreima 5722 ofrfval 6190 ofvalg 6191 off 6194 offres 6243 eqopi 6281 op1steq 6288 dfoprab4 6301 f1od2 6344 reldmtpos 6362 smores3 6402 smores2 6403 ctssdccl 7239 pinn 7457 indpi 7490 enq0enq 7579 preqlu 7620 elinp 7622 prop 7623 elnp1st2nd 7624 prarloclem5 7648 cauappcvgprlemladd 7806 peano5nnnn 8040 nnindnn 8041 recn 8093 rexr 8153 peano5nni 9074 nnre 9078 nncn 9079 nnind 9087 nnnn0 9337 nn0re 9339 nn0cn 9340 nn0xnn0 9397 nnz 9426 nn0z 9427 nnq 9789 qcn 9790 rpre 9817 iccshftri 10152 iccshftli 10154 iccdili 10156 icccntri 10158 fzval2 10168 fzelp1 10231 4fvwrd4 10297 elfzo1 10351 infssuzcldc 10415 expcllem 10732 expcl2lemap 10733 m1expcl2 10743 bcm1k 10942 bcpasc 10948 wrdv 11047 ccatclab 11088 pfxfv0 11183 pfxfvlsw 11186 cau3lem 11540 climconst2 11717 fsum3 11813 binomlem 11909 fprodge1 12065 cos12dec 12194 dvdsflip 12277 isprm3 12555 phimullem 12662 prmdiveq 12673 structcnvcnv 12963 fvsetsid 12981 ptex 13211 nmzsubg 13661 nmznsg 13664 nzrring 14060 lringnzr 14070 rege0subm 14461 znrrg 14537 tgval2 14638 qtopbasss 15108 dedekindicc 15220 ivthinc 15230 ivthdec 15231 dvply2 15354 cosz12 15367 cos0pilt1 15439 ioocosf1o 15441 mpodvdsmulf1o 15577 fsumdvdsmul 15578 lgsquadlemofi 15668 lgsquadlem1 15669 lgsquadlem2 15670 exmidsbthrlem 16163 |
| Copyright terms: Public domain | W3C validator |