| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseli | Unicode version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseli.1 |
|
| Ref | Expression |
|---|---|
| sseli |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseli.1 |
. 2
| |
| 2 | ssel 3187 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: sselii 3190 sselid 3191 elun1 3340 elun2 3341 finds 4648 finds2 4649 issref 5065 2elresin 5387 fvun1 5645 fvmptssdm 5664 elfvmptrab1 5674 fvimacnvi 5694 elpreima 5699 ofrfval 6167 ofvalg 6168 off 6171 offres 6220 eqopi 6258 op1steq 6265 dfoprab4 6278 f1od2 6321 reldmtpos 6339 smores3 6379 smores2 6380 ctssdccl 7213 pinn 7422 indpi 7455 enq0enq 7544 preqlu 7585 elinp 7587 prop 7588 elnp1st2nd 7589 prarloclem5 7613 cauappcvgprlemladd 7771 peano5nnnn 8005 nnindnn 8006 recn 8058 rexr 8118 peano5nni 9039 nnre 9043 nncn 9044 nnind 9052 nnnn0 9302 nn0re 9304 nn0cn 9305 nn0xnn0 9362 nnz 9391 nn0z 9392 nnq 9754 qcn 9755 rpre 9782 iccshftri 10117 iccshftli 10119 iccdili 10121 icccntri 10123 fzval2 10133 fzelp1 10196 4fvwrd4 10262 elfzo1 10314 infssuzcldc 10378 expcllem 10695 expcl2lemap 10696 m1expcl2 10706 bcm1k 10905 bcpasc 10911 wrdv 11010 ccatclab 11050 cau3lem 11425 climconst2 11602 fsum3 11698 binomlem 11794 fprodge1 11950 cos12dec 12079 dvdsflip 12162 isprm3 12440 phimullem 12547 prmdiveq 12558 structcnvcnv 12848 fvsetsid 12866 ptex 13096 nmzsubg 13546 nmznsg 13549 nzrring 13945 lringnzr 13955 rege0subm 14346 znrrg 14422 tgval2 14523 qtopbasss 14993 dedekindicc 15105 ivthinc 15115 ivthdec 15116 dvply2 15239 cosz12 15252 cos0pilt1 15324 ioocosf1o 15326 mpodvdsmulf1o 15462 fsumdvdsmul 15463 lgsquadlemofi 15553 lgsquadlem1 15554 lgsquadlem2 15555 exmidsbthrlem 15961 |
| Copyright terms: Public domain | W3C validator |