| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseli | Unicode version | ||
| Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sseli.1 |
|
| Ref | Expression |
|---|---|
| sseli |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseli.1 |
. 2
| |
| 2 | ssel 3187 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: sselii 3190 sselid 3191 elun1 3340 elun2 3341 finds 4649 finds2 4650 issref 5066 2elresin 5388 fvun1 5647 fvmptssdm 5666 elfvmptrab1 5676 fvimacnvi 5696 elpreima 5701 ofrfval 6169 ofvalg 6170 off 6173 offres 6222 eqopi 6260 op1steq 6267 dfoprab4 6280 f1od2 6323 reldmtpos 6341 smores3 6381 smores2 6382 ctssdccl 7215 pinn 7424 indpi 7457 enq0enq 7546 preqlu 7587 elinp 7589 prop 7590 elnp1st2nd 7591 prarloclem5 7615 cauappcvgprlemladd 7773 peano5nnnn 8007 nnindnn 8008 recn 8060 rexr 8120 peano5nni 9041 nnre 9045 nncn 9046 nnind 9054 nnnn0 9304 nn0re 9306 nn0cn 9307 nn0xnn0 9364 nnz 9393 nn0z 9394 nnq 9756 qcn 9757 rpre 9784 iccshftri 10119 iccshftli 10121 iccdili 10123 icccntri 10125 fzval2 10135 fzelp1 10198 4fvwrd4 10264 elfzo1 10316 infssuzcldc 10380 expcllem 10697 expcl2lemap 10698 m1expcl2 10708 bcm1k 10907 bcpasc 10913 wrdv 11012 ccatclab 11053 pfxfv0 11146 pfxfvlsw 11149 cau3lem 11458 climconst2 11635 fsum3 11731 binomlem 11827 fprodge1 11983 cos12dec 12112 dvdsflip 12195 isprm3 12473 phimullem 12580 prmdiveq 12591 structcnvcnv 12881 fvsetsid 12899 ptex 13129 nmzsubg 13579 nmznsg 13582 nzrring 13978 lringnzr 13988 rege0subm 14379 znrrg 14455 tgval2 14556 qtopbasss 15026 dedekindicc 15138 ivthinc 15148 ivthdec 15149 dvply2 15272 cosz12 15285 cos0pilt1 15357 ioocosf1o 15359 mpodvdsmulf1o 15495 fsumdvdsmul 15496 lgsquadlemofi 15586 lgsquadlem1 15587 lgsquadlem2 15588 exmidsbthrlem 15998 |
| Copyright terms: Public domain | W3C validator |