Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseli | Unicode version |
Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sseli.1 |
Ref | Expression |
---|---|
sseli |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseli.1 | . 2 | |
2 | ssel 3122 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-in 3108 df-ss 3115 |
This theorem is referenced by: sselii 3125 sseldi 3126 elun1 3274 elun2 3275 finds 4557 finds2 4558 issref 4965 2elresin 5278 fvun1 5531 fvmptssdm 5549 elfvmptrab1 5559 fvimacnvi 5578 elpreima 5583 ofrfval 6034 ofvalg 6035 off 6038 offres 6077 eqopi 6114 op1steq 6121 dfoprab4 6134 f1od2 6176 reldmtpos 6194 smores3 6234 smores2 6235 ctssdccl 7045 pinn 7212 indpi 7245 enq0enq 7334 preqlu 7375 elinp 7377 prop 7378 elnp1st2nd 7379 prarloclem5 7403 cauappcvgprlemladd 7561 peano5nnnn 7795 nnindnn 7796 recn 7848 rexr 7906 peano5nni 8819 nnre 8823 nncn 8824 nnind 8832 nnnn0 9080 nn0re 9082 nn0cn 9083 nn0xnn0 9140 nnz 9169 nn0z 9170 nnq 9524 qcn 9525 rpre 9549 iccshftri 9881 iccshftli 9883 iccdili 9885 icccntri 9887 fzval2 9897 fzelp1 9958 4fvwrd4 10021 elfzo1 10071 expcllem 10412 expcl2lemap 10413 m1expcl2 10423 bcm1k 10616 bcpasc 10622 cau3lem 10996 climconst2 11170 fsum3 11266 binomlem 11362 fprodge1 11518 cos12dec 11646 dvdsflip 11724 infssuzcldc 11819 isprm3 11975 phimullem 12077 prmdiveq 12088 structcnvcnv 12166 fvsetsid 12184 tgval2 12411 qtopbasss 12881 dedekindicc 12971 ivthinc 12981 ivthdec 12982 cosz12 13061 cos0pilt1 13133 ioocosf1o 13135 exmidsbthrlem 13555 |
Copyright terms: Public domain | W3C validator |