ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabss Unicode version

Theorem opabss 4041
Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
opabss  |-  { <. x ,  y >.  |  x R y }  C_  R
Distinct variable groups:    x, R    y, R

Proof of Theorem opabss
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-opab 4039 . 2  |-  { <. x ,  y >.  |  x R y }  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  x R y ) }
2 df-br 3978 . . . . 5  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
3 eleq1 2227 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  <->  <. x ,  y
>.  e.  R ) )
43biimpar 295 . . . . 5  |-  ( ( z  =  <. x ,  y >.  /\  <. x ,  y >.  e.  R
)  ->  z  e.  R )
52, 4sylan2b 285 . . . 4  |-  ( ( z  =  <. x ,  y >.  /\  x R y )  -> 
z  e.  R )
65exlimivv 1883 . . 3  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  x R y )  -> 
z  e.  R )
76abssi 3213 . 2  |-  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  x R y ) }  C_  R
81, 7eqsstri 3170 1  |-  { <. x ,  y >.  |  x R y }  C_  R
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1342   E.wex 1479    e. wcel 2135   {cab 2150    C_ wss 3112   <.cop 3574   class class class wbr 3977   {copab 4037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-in 3118  df-ss 3125  df-br 3978  df-opab 4039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator