Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opabss | Unicode version |
Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
opabss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 4039 | . 2 | |
2 | df-br 3978 | . . . . 5 | |
3 | eleq1 2227 | . . . . . 6 | |
4 | 3 | biimpar 295 | . . . . 5 |
5 | 2, 4 | sylan2b 285 | . . . 4 |
6 | 5 | exlimivv 1883 | . . 3 |
7 | 6 | abssi 3213 | . 2 |
8 | 1, 7 | eqsstri 3170 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1342 wex 1479 wcel 2135 cab 2150 wss 3112 cop 3574 class class class wbr 3977 copab 4037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-in 3118 df-ss 3125 df-br 3978 df-opab 4039 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |