ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabss Unicode version

Theorem opabss 4097
Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
opabss  |-  { <. x ,  y >.  |  x R y }  C_  R
Distinct variable groups:    x, R    y, R

Proof of Theorem opabss
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-opab 4095 . 2  |-  { <. x ,  y >.  |  x R y }  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  x R y ) }
2 df-br 4034 . . . . 5  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
3 eleq1 2259 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  <->  <. x ,  y
>.  e.  R ) )
43biimpar 297 . . . . 5  |-  ( ( z  =  <. x ,  y >.  /\  <. x ,  y >.  e.  R
)  ->  z  e.  R )
52, 4sylan2b 287 . . . 4  |-  ( ( z  =  <. x ,  y >.  /\  x R y )  -> 
z  e.  R )
65exlimivv 1911 . . 3  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  x R y )  -> 
z  e.  R )
76abssi 3258 . 2  |-  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  x R y ) }  C_  R
81, 7eqsstri 3215 1  |-  { <. x ,  y >.  |  x R y }  C_  R
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182    C_ wss 3157   <.cop 3625   class class class wbr 4033   {copab 4093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-in 3163  df-ss 3170  df-br 4034  df-opab 4095
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator